
 

ABSTRACT 
Granular materials do not always flow 

homogeneously like fluids when submitted 
to external stress, but often form rigid 
regions that are separated by narrow shear 
bands where the material yields and flows. 
This shear localization impacts their 
apparent rheology, which makes it difficult 
to infer a constitutive behavior from 
conventional rheometric measurements. 
Moreover, they present a dilatant behavior, 
which makes their study in classical fixed-
volume geometries difficult. These features 
led numerous groups to perform extensive 
studies with inclined plane flows, which 
were of crucial importance for the 
development and the validation of the 
( )−Iµ rheology. Our aim is to develop a 

method to characterize granular materials 
with rheometrical tools. Using rheometry 
measurements in an annular shear cell, 
dense granular flows of 0.5mm spherical 
and monodisperse beads are studied. A 
focus is placed on the comparison between 
the present results and the ( )−Iµ rheology. 
 
INTRODUCTION 

Granular matter shows both solid and 
fluid behavior [1]. These materials are very 
sensitive to various parameters: geometry of 
the flow, wall roughness, flow rate, shape 
and size distribution of the grains, and 
coupling with the interstitial fluid [2]. In the 
dry case, the rheology is solely governed by 

momentum transfer and energy dissipation 
occurring in direct contacts between grains 
and with the walls. Despite the seeming 
simplicity of the system, the behavior of dry 
granular material is very rich and extends 
from solid to gaseous properties depending 
on the flow regime. In the absence of a 
unified framework, granular flows are 
generally divided into three different 
regimes. (i) At low shear, particles stay in 
contact and interact frictionally with their 
neighbours over long periods of time. This 
“quasistatic” regime of granular flow has 
been classically studied using modified 
plasticity models based on a Coulomb 
friction criterion [3]. The response in terms 
of velocity or solid fraction profiles is 
independent of the shear rate. (ii) Upon 
increasing the deformation rate, a 
viscouslike regime occurs and the material 
flows more as a liquid [5]. In this 
intermediate regime, the particles experience 
multicontact interactions. (iii) At very high 
velocity, a transition occurs toward a 
gaseous regime, in which the particles 
interact through binary collisions [4]. For 
the modeling of dense granular flows, the 
concept of inertial number   has been widely 
used and investigated with regard to its 
relationship with dynamic parameters, such 
as velocity, stress, and friction coefficient, 
which leads to constitutive relations for 
granular flows. Thus, “dynamic dilatancy” 
law and “friction” law were deduced from 
discrete simulation of two dimensional 

 
Dry granular flows – rheological measurements of the ( )−Iµ Rheology  

 
Abdoulaye Fall1, Michel Badetti1, Guillaume Ovarlez2, François Chevoir1, 

and Jean-Noël Roux1 
 

1 Laboratoire NAVIER, UMR 8205 CNRS-ENPC-IFSTTAR, Champs sur Marne, France 
2 CNRS, LOF, UMR 5258, 33600 Pessac, France 

ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 25, 2017

11



simple shear of a granular material without 
gravity [5]. It was observed that both 
dimensionless quantities: the internal 
friction coefficient Nστµ /=  and the solid 
fraction φ  are functions of I [5,6]. 
Following general results from simulations 
of planar shear [5] and successful 
applications to inclined plane flows [7], the 
experiments of Jop et al.  [8] were carried 
out to quantify, for glass beads, the  
rheology from the quasistatic to the rapid 
flow regime, corresponding to moderate I as   

( ) ( )IIs /1/ 012 +−+= µµµµ  in which, sµ , 2µ  
and 0I  are three fitting parameters dependent 
on material properties. However, the 
asymptotic value of   at high I  was not 
obtained by da Cruz et al.  [5] who observed 
an approximately linear increase of the 
internal friction coefficient from the static 
internal friction value. In 3D-simulation 
studies, Hatano did not either observe the 
asymptotic value of   at high I: from 410−=I  
to 2.0=I , he reported a law in which the 
friction coefficient increases as a power of I: 

n
s Iαµµ +=  [9].  

In the present work (see Fall et al.  [10] 
more details), we show that it is not 
necessary to develop specific setups (such as 
the inclined plane) to study dense granular 
flows. Indeed, we show that a simple 
annular shear cell can be adapted to a 
standard rheometer to study the rheology of 
granular materials under controlled 
confining pressure. It allows us, in 
particular, to obtain the dilatancy law ( )Iφ  
and also to study very accurately the 
quasistatic limit. Thus, from the steady state 
measurements of the torque and the gap 
during an imposed shear flow under an 
applied normal confining stress Nσ , we 
report two laws in which the internal friction 
coefficient and the solid fraction are 
functions of I. An effort is then made to 
compare the present results with the −)(Iµ
rheology described in the literature. 

MATERIALS AND METHODS 
To investigate the steady flows of dry 

granular materials and determine the −)(Iµ
rheology, three main features are required: 
(i) to avoid shear banding, (ii) to apply a 
confining stress in the velocity gradient 
direction, and (iii) to allow volume fraction 
variations. These requirements led us to 
develop a home-made annular shear cell, in 
which pressure-imposed measurements can 
be performed. Annular shear cells have been 
extensively used to characterize the flow of 
pharmaceutical powders and dry granular 
materials [11]. We use a granular material 
made of rigid polystyrene beads (from 
Dynoseeds) of density =pρ  1050 kg/m3, of 

diameter =pd 0.5 mm (with a standard 
deviation of 5%). Spherical beads fill the 
annular box between two static concentric 
cylinders with, respectively, an inner and 
outer radii of Ri=21 mm and Ro=45 mm. The 
width of the annular trough is about 48 pd   
leading to a ratio of inner to outer wall radii 
of 0.46. We have verified that changing the 
ratio of inner to outer cylinder radii of the 
annular shear cell does not significantly 
affect the results. The filling height (initial 
gap, h0) of the annular box is adjustable 
from a few grain diameters (typically 5 pd ) 
to 30 pd . The experiments were performed 

initially on a very dense piling  ≈0φ 0.625, 
close to the so called random close packing 
of 0.637  [12,13] obtained by combining a 
rain filling and tapping the box  [14] to get a 
reasonably uniform packing. However, we 
show that the steady state obtained when the 
material is sheared is the same for an 
initially looser piling. Granular beads are 
then driven by the ring-shaped upper 
boundary which is assembled on a Kinexus 
Pro rheometer by Malvern. To avoid wall 
slip, both the moving upper boundary and 
the static lower boundary are serrated, with 
0.5 mm ridges which correspond to the size 
of grains. 
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In our rheometer, instead of setting the 
value of the gap size for a given experiment, 
as in previous studies and generally in 
rheometric measurements, we impose the 
normal force (i.e., the confining normal 
stress) and then, under shear, we let the gap 
size vary in order to maintain the desired 
value of the normal force. We measure then 
the torque T  and the gap h as a function of 
strain (or time). In this case, the solid 
fraction ( )tφ  is not fixed but adjusts to the 
imposed shear. However, it remains 
important to notice that, in order to keep the 
imposed shear rate constant, the rheometer 
adjusts the rotation velocity Ω  since the 
gap varies as will be discussed below. The 
system reaches a steady state after a certain 
amount of shear strain. 

 
RESULTS AND ANALYSIS 

We have measured the driving torque 
and the gap as a function of shear strain for 
various imposed normal force FN (between 
1 and 5N) and applied shear rate γ!  
(between 0.01 and 77 s-1) for a given gap. In 
Figs. 1(a,b), we show those measurements 
for FN=3N and various  γ! . At low shear 
rate, the driving torque increases slowly 
before reaching a steady plateau within 
strain of order of unity. Meanwhile, the gap 
fluctuates around its initial value. (We show 
the gap size rescaled by its initial value 
before shearing h/h0 called the rescaled gap 
in the following.).  

Upon increasing the imposed shear rate, 
an overshoot occurs: Its amplitude increases 
with increasing the shear rate. In steady 
state, a rate dependence of the torque is 
observed [Fig. 1(a)]. Moreover, increasing 
the imposed shear rate causes an increase of 
the gap size [Fig. 1(b)] allowing to quantify 
the dynamic dilatancy of the granular 
material. Notice that, with increasing the 
applied shear rate, large fluctuations of the 
driving torque and also of the gap size 
evolution occur in steady state flows. 
Similarly, in experiments in which different 

normal forces are imposed at a given shear 
rate [Figs. 1(c,d)], the steady torque is 
observed to increase while the steady solid 
fraction (steady gap) decreases when the 
normal force is increased.  

 
Figure. 1: Evolution as a function of the 
strain at 3N imposed normal force under 
different applied shear rates of: (a) The 

driving torque and (b) the rescaled gap size 
(only two curves are shown for clarity). 

Evolution as a function of the strain at 77 s-1 
imposed shear rate under different applied 

normal forces of: (c) The driving torque and 
(d) the gap size rescaled by its initial value 

before shearing. 
 

Once the above described experiments are 
combined, we can obtain the constitutive 
laws of the dry granular material, i.e., the 
dependence of the steady solid fraction φ  
and the ratio between shear and normal 
stresses Nστµ /=  variation on shear rate. 
Indeed, from macroscopic quantities T, Ω , 
FN, and h, the shear stress τ , the normal 
stress Nσ , shear rate γ! , and the solid 
fraction φ  can be computed [10] and one 
can plot the shear stress in the steady state 
as a function of the normal stress as shown 
in Fig. 2(a).  
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The first observation is that a linear 
relationship between the shear and normal 
stresses is seen for all imposed shear rates, 
with a slope that increases from 0.265 to 0.6 
with increasing the shear rate. If an internal 
friction coefficient µ  is defined as the ratio 
between shear and normal stresses, we 
evidence here that µ  is rate dependent: it 
increases with γ! . 

 
Fig. 2: Plot of the shear stress (a) and of the solid fraction 

rescaled by its initial value before shearing (b) as a function 
of the normal stress. The stress and the gap are measured in 
the steady state, for different imposed shear rate. The error 

bars come from three experiment runs. 
 

The second observation is that, for all 
imposed shear rates, the steady value of the 
solid fraction decreases when one decreases 
the normal stress [Fig. 2(b)]. Indeed, since 
the grains cannot escape from the cell, one 
can measure unambiguously the solid 
fraction from the gap variation as 

( )22
0/ iRRhm −= πρφ  in which m represents the 

mass of grains. Thus, 
00 // φφ=hh  will simply 

reflect the impact of shear and confinement 
on dilatancy. 
In order to analyze the results in term of 

−)(Iµ rheology, one has to define an 
inertial number such as 

pNpdI ρσγ //!= . It 
varies between 10–7and 0.1 in the range of 
applied normal force and shear rate. This 
corresponds to the usual range of quasistatic 
to dense flow regimes. It should be noted 
that our annular shear geometry does not 
allow higher values of I. 
Figure 3(a) shows how µ  vary throughout 
the flow regimes since I characterizes the 
local rapidity of the flow. All the data 
obtained for different sets of shear rate and 
normal force collapse on a single curve 

µτ /  vs I. For low inertial number, the 
internal friction coefficient tends to a finite 
value ls ≈µ  0.265 and increases with 
increasing I. 

 
Fig. 3: Constitutive law for different sets of mean shear 

rates and imposed normal forces (a) friction law, i.e., 
effective internal friction coefficient as a function of 
inertial number; (b) dynamic dilatancy law, i.e., solid 

fraction as a function of inertial number. The error bars 
come from three experiment runs. 

 
At the same time, the solid fraction variation 

0/φφ  with the inertial number I is shown in 
Fig. 3(b). Once again, all the data collapse 
on a single curve. At low I, 

0/φφ  is quasi-
constant: this is the quasistatic regime. 
When I increases, the inertia starts 
influencing the flow and the system 
becomes rate dependent: the ratio 0/φφ  
decreases; this regime corresponds to the 
dense flow in which the granular material 
dilates. Moreover, in order to check the 
robustness of our results, we have varied the 
initial size of the gap. Here, with our annular 
shear geometry, the same experiments 
discussed above are made with different gap 
sizes from 6dp to 22dp and different sets of 
imposed shear rate and normal force. It is 
shown in Fig. 3 that changing the gap does 
not significantly affect these results. This 
suggests a total absence of shear localization 
at high inertial number. However, at small 
inertial number, the resolution of our 
measurements is not sufficient to dismiss the 
possibility that shear localization arises. 
 
CONCLUSION 
From the steady state measurement of the 
torque and the gap, the internal friction 
coefficient, the solid fraction, and the 
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inertial number I are measured. For low I, 
the flow goes to the quasistatic limit and the 
internal friction coefficient and the solid 
fraction profiles are independent of I. Upon 
increasing I, dilation occurs and the solid 
fraction decreases linearly when I increases 
while the friction coefficient increases. 
Comparing now these experimental results 
with existing models such as those of Jop et 
al. [15] and Hatano [9] on dry granular 
flows in terms of quasistatic and dense flow 
behaviors, our experimental data include 
points in range of I from 10–7 to 0.1 which 
covers quasistatic and dense flow regimes. 
Our measurements then show that, in this 
range of I, both models can describe our 
data. As a consequence, we bring evidence 
that rheometric measurements can be 
relevant to describe dry granular flows. 
However, additional experimental work 
should be carried out in order to measure the 
dependence of the boundary layer 
constitutive law on the state of the bulk 
material, so as to be able to describe 
properly the rheology when approaching the 
quasistatic limit. 
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