
 

ABSTRACT 
In drilling research, aqueous Polyanionic 
Cellulose (PAC) solutions are often 
employed as drilling fluid model systems in 
experimental laboratory studies to 
investigate cuttings transport. For this 
purpose, PAC solutions are typically 
assumed to behave purely viscous, i.e. they 
do not show time-dependent/thixotropic 
and/or viscoelastic properties and are thus 
modelled with a Generalized Newtonian 
Fluid (GNF) constitutive equation. However, 
PAC solutions feature both viscoelastic and 
thixotropic properties on different time 
scales1.In this study, cuttings transport 
process time scales are compared with 
rheological time scales for PAC solutions1. 
Using the concepts of Deborah and 
Weissenberg numbers as well as Pipkin 
spaces for two spatial scales, an arbitrary 
annular (wellbore) section and the particle 
scale, we show that PAC solutions may not 
necessarily satisfy a GNF formulation under 
all circumstances. In particular, for 
Lagrangian unsteady flows, e.g. due to flow 
start-up, particle acceleration and/or spatially 
developing flows, the GNF framework is not 
entirely valid and leads to some error. We 
suggest several actions to minimize the 
magnitude of the error. 

NOMENCLATURE 
Throughout the manuscript, we apply the 
official nomenclature of The Society of 
Rheology2, unless indicated otherwise and 
with the following additional definitions. 

Abbreviations 
CMC Carboxymethyl Cellulose. 
FS Fluid flow scale. 
GNF  Generalized Newtonian Fluid. 
PAC Polyanionic Cellulose. 
PS Particle scale. 
RPM Revolutions per minute. 

Symbols 
! Diameter. 
g Magnitude of gravity. 
" Length. 
# Volumetric flow rate. 
Indices 
$% Cross. 
! Drag. 
&' Elastic. 
( Fluid, flow. 
ℎ Hydraulic. 
* Inner. 
+( Mean flight. 
, Outer. 
- Particle. 
." Power Law. 
/&0 Settling. 
/% Shear rate/Strain rate. 
0ℎ Thixotropic. 
INTRODUCTION 
Polyanionic Cellulose (PAC), as well as its 
chemical parent sodium Carboxymethyl 
Cellulose (CMC), is a natural polymer and 
used both as drilling fluid viscosifier in oil 
drilling and, dissolved in distilled water, 
drilling fluid substitute in (experimental) 
cuttings transport studies. The latter are 
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typically conducted in research laboratories 
using flow loops, where a drilling fluid, or a 
drilling fluid substitute such as the here 
discussed PAC solutions, is circulated 
through a, mainly annular, test section of 
length " and outer diameter !1 as depicted in 
Figure 1. 

 
Figure 1: Annular domain typically employed 

for cuttings transport studies. 

The inner pipe with diameter !2 may rotate 
with a (not necessarily constant) RPM to 
replicate drill string rotation and a fluid-
particle-mixture characterized by fluid (#3) 
and solid (#4) volumetric flow rates and a 
mean particle diameter !5 is injected at one 
end to investigate the quality of solids 
transport through the domain. 

Problem formulation and paper scope  
Typically, PAC solutions are considered 
purely viscous, i.e. they are rheologically 
described by a Generalized Newtonian Fluid 
(GNF) constitutive equation and do neither 
feature viscoelastic nor time-
dependent/shear-history dependent 
properties. By definition, GNF behaviour 
implies a instantaneous stress response to a 
change in shear rate and vice versa. However, 
PAC solutions as such do feature both 
thixotropic and viscoelastic behaviour on 
time scales ranging from 10-4-101 and 101-103 
s, respectively1. It is not clear, under which 
circumstances the GNF modelling approach 
is justified for a cuttings transport problem. 
By means of time scale comparisons in the 
sense of Deborah3 and Weissenberg4 
numbers, as well as Pipkin spaces5, we 
investigate the assumption of a GNF for the 
two relevant spatial scales (see Figure 1), the 
main fluid flow scale (FS, index () and the 
particle scale (PS, index -). We further 

quantitatively validate the GNF assumption 
for typical parameter ranges for cuttings 
transport studies. 

MATERIALS & METHODS 

Cuttings transport parameter space 
For a cuttings transport problem in an annular 
domain (Figure 1), Table 1 provides the 
relevant (concerning the here discussed 
rheology of drilling fluid and/or drilling fluid 
model systems) parameters6. 

Table 1: Characteristic parameter ranges6 for 
problem depicted in Figure 1. 

Parameter Range Unit 
!1 

17.5, 12.25, 9.875 
8.5, 6.125 in 

!2 
6.625, 6.625, 5, 4, 

3.5 in 

!5 0.01, 0,1, 1, 10 mm 
63  1000 kg/m3 
65 2650 kg/m3 

#3,89: 
5700, 4200, 3500, 

2300, 700 L/min 
   

The apparent viscosity ;3(=̇) of PAC 
solutions is best described with a Cross7 (Cr) 
material function1 

 (1) 

where the Cross model coefficients are given 
in Table 2 for two different concentrations. 

Table 2: Cross material function model 
parameters for PAC2 (2 g/L) and PAC4 (4 g/L)1. 
Parameter PAC2 PAC4 Unit 
@AB 0.5162 0.5832 - 
CAB 0.0121 0.0278 Pa·sn 

;D 0.0524 0.2121 Pa·s 
;E 0.0010 0.0010 Pa·s 

Characteristic time scales of the fluid 
In principle, various definitions for 
characteristic time scales of the fluid, 
hereafter referred to as rheological times 
scales, exist. However, for practical 
simplicity, we here apply two characteristic 
time scales, namely FGH and FIJ , representing 
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the viscoelastic and thixotropic behaviour of 
the fluid, respectively. For the PAC solutions 
under discussion it was recently shown1 that 
they show both viscoelastic and thixotropic 
behaviour, with relaxation time scale ranges 
as summarized in Table 3. 

Table 3: Characteristic rheological time scales 
for PAC solutions1. 

Fluid FGH [s] FIJ  [s] 
PAC2 0.01…0.23 1.7…76.8 
PAC4 0.03…0.29 8.6…615 

   

In principle, one should further distinguish 
between time scales describing the relaxation 
of stress for a breaking and for a rebuilding 
fluid microstructure. For the PAC solutions 
under discussion, the time scales given in 
Table 3 are mainly characterising the 
rebuilding of microstructure. With respect to 
;3 , 90% of the destruction of microstructure 
happens very fast in the order of <1s, whereas 
the remaining 10% develop on long time 
scales (76.8 s, 615 s)1. 

Characteristic time scales of the process 
The problem of cuttings transport in drilling, 
as depicted in a simplified manner for 
laboratory cuttings transport studies in Figure 
1, does occur on various process time scales. 
For the flow scale, i.e. the entire annular 
domain as depicted in Figure 1, we define the 
mean flight (index +() time as a 
macroscopic time scale on which 
deformation occurs. This is equivalent to the 
time it takes an arbitrary fluid element to 
travel through the domain in the stream wise 
direction. 

  (2) 

A second characteristic, kinematic, time 
scale is the inverse of the local rate of 
deformation/strain rate (index /%) and thus 
associated with the local rate of stretching of 
an arbitrary fluid element due to imposed 
shear. It may be estimated by the inverse of 
the shear rate at the wall of an annulus 

  (3) 

where the narrow-slot approximation is used. 
On the particle scale, a characteristic time for 
the deformation process is the time it takes 
the particle to settle a distance equal to its 
diameter, here denoted as the particle settling 
time. 

  (4) 

The particle settling velocity K4,4GI may be 
estimated based on Stokes law for Rep < 1 as 

, (5) 

where in general the fluid viscosity ;3(=̇) at 
the particle surface, relevant for the particle 
sedimentation, is a result of a superposition 
of global strain (the magnitude of the shear 
rate of the background flow field =̇3) and 
local strain (the particle-induced shear rate 
=̇5 = 2K5,4GI/!5). 

 (6) 

For Re5 > 1, drag laws may be used to 
estimate the settling velocity, for instance, 
the empirical expression of Schiller-
Naumann8 for the drag coefficient QR.or 
dedicated GNF drag laws, alternatively. 

  (7) 

Again, we define a kinematic time scale as 
the inverse of the shear rate, which for a 
settling particle is equivalent to the time it 
takes the particle to settle half its diameter 

.  (8) 

Another time scale relevant for the case of 
particle acceleration is the particle relaxation 
time as the time it takes the particle to adapt 
to 63 % of the fluids velocity 
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. (9) 

Process vs. rheological time scales 
A classic relation between characteristic time 
scales is the concept of the Deborah number 
De. The original definition of De is the ratio 
of a characteristic rheological time scale to 
the time scale of observation3 

.  (10) 

Historically, De is applied to represent the 
degree of elastic behavior of a material, i.e. 
whether it predominantly behaves like a fluid 
or like a solid. Hence, it is considered to 
describe viscoelastic effects but not time-
dependent effects resulting from 
microstructural changes9. However, for the 
purpose of this study, De serves as a degree 
of purely viscous behavior, i.e. the 
assumption of a GNF. For this purpose, De is 
defined as the ratio of the characteristic 
rheological time scales of the fluid to the 
characteristic process time scales of the flow, 
TU,83  with V ∈ {(, -}, namely equations (2) 
and (4). 
The definition of the Deborah number as well 
as the closely related Weissenberg4 number 

  (11) 

is not unambiguous. In fact, in the literature 
varying and often unclear definitions exist 9,10. 
In contrast to De, which accounts for the 
degree of transient nature of the flow and 
becomes zero for Lagrangian and 
rheologically steady flows (TZ[4 → ∞)9,10, Wi 
accounts for the degree of non-linear 
behavior of the material. 
Note that both De and Wi are functions of the 
Reynolds number Re because the process 
time scales depend on the fluid bulk velocity 
3̂ = #3/_ or the particle settling velocity 
K5,4GI, the viscosity ;3  and a lateral spatial 

scale, e.g. the particle diameter !5 or the 
hydraulic diameter !J = !1 − !2. 
RESULTS 
We first present results for the main flow 
scale followed by results for the particle 
scale. For both spatial scales, we present 
results characterising the thixotropic 
behaviour and the viscoelastic behaviour. 
Figure 2 and Figure 3 depict the thixotropic 
DeIJ  and WiIJ  as function of the Generalized 
Reynolds number11 Rea  for PAC2 and PAC4, 
respectively. The power law (PL) 
coefficients of Rea  are obtained by requiring 
;3bc = ;3Ad  and e;3bc/e=̇ = e;3Ad/e=̇ for any 
given point of the flow curve ;3 = ((=̇). 
Five different ranges are depicted for both De 
and We on all plots because of: (1) The min. 
and max. rheological time scales as indicated 
by Table 3. (2) The different combinations of 
drill pipe and hole diameters as well as 
corresponding max. flow rate #3,89: 
(#3,82f=10 L/min for all cases) according to 
Table 1 (Numbers 1-5 in respective order). 
The length scale " is estimated with 1 m, 
which is a typical order of magnitude for the 
actual development length/test section 
(Figure 1) of a flow loop. The presented 
DeIJ-WiIJ-Rea  spaces are supplemented 
with the corresponding Pipkin spaces5, where 
De2 and Wi2 are plotted in relation to each 
other (Figure 4, Figure 5). In contrast to the 
De2-Wi2-Rea  spaces, the De2-Wi2 spaces 
feature only two different lines representing 
the min. and max. rheological time scales. In 
the same manner, we subsequently present 
the viscoelastic behaviour on the main flow 
scales (Figure 6-Figure 9), the thixotropic 
behaviour on the particle scale (Figure 10-
Figure 13) and the viscoelastic behaviour on 
the particle scale (Figure 14-Figure 17). 
The material function ;3 = ((=̇) 
predominantly affects Re, rather than De and 
Wi, which is why the difference in De and Wi 
is comparatively small for PAC2 and PAC4. 
On the other hand, De and Wi are strongly 
dependent on the rheological time scales,  
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Figure 2. {Deth, With} = f(ReG), FS, PAC2. 

 

 
Figure 3. {Deth, With} = f(ReG), FS, PAC4. 

 
Figure 4. With = f(Deth), FS, PAC2. 

 

 
Figure 5. With = f(Deth), FS, PAC4. 

which in general is a function of the material 
function ;3 = ((=̇). However, as may be 
inferred from Table 3, the rheological time 
scale differences are relatively large for the 
thixotropic cases but negligible for the 
viscoelastic cases. For the fluid flow scale, 
DeGH	is of the order <1, while DeIJ	is of the 
order 10-2…103. In case of the particle scale, 
DeGH	is of the order 10-2…101, while DeIJ>1 
(for !5>0.1 mm). 
With the assumed #3,89: , transitional flow 
may be reached on the FS because Rea  
exceeds the turbulent flow threshold 2100. In 
case of PAC2, particles larger than 1 mm 
(PAC2) may be expected to deviate from the 
Stokes flow assumption on the PS because 
Re5 becomes larger than 1. In case of PAC4, 
this happens for !5>2 mm. 

DISCUSSION 

Pure GNF behaviour is associated with the 
limit De → 0, i.e. the very left side of the 
Pipkin space. The De concept inherently 
assumes transient development of flow 
and/or fluid properties, i.e. the process time 
scale in the denominator describes a transient 
time scale on which the deformation process 
evolves. For a steady flow, it is generally 
argued that the De looses its meaning. 
However, in a flow loop the flow is not 
necessarily Lagrangian steady because of 
flow unifiers, bends, and pumps. 

Fluid flow scale  
Viscoelasticity does not seem to appear a 
major issue, because DeGH<0.1 for the vast 
majority of the cases investigated. However, 
for higher polymer concentrations this may 
be different because the viscoelasticity may 
be more pronounced. Thixotropy is much 
more relevant because DeIJ>0.1 for the 
majority of the investigated cases. 
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Figure 6. {Deel, Wiel} = f(ReG), FS, PAC2. 

 

 
Figure 7. {Deel, Wiel} = f(ReG), FS, PAC4. 

 
Figure 8. Wiel = f(Deel), FS, PAC2. 

 

 
Figure 9. Wiel = f(Deel), FS, PAC4. 

If the flow at the inlet of the test section 
depicted in Figure 1 is at a full dynamic 
equilibrium in a Lagrangian sense, i.e. ḣ3 = 
0, ;̇3 = 0, and Ḟ3 = 0, then De2 = 0 and the 
GNF formulation applies. Other than that, 
two different cases are to be distinguished: 
(1) A transient, e.g. start-up flow, where 3̂  
increases from zero to a nominal value, such 
as the pump start-up phase in a flow loop. (2) 
Flows featuring cross-sectional changes and 
hence a development length ", for instance 
because of required pumps or the flow 
straighteners often used in flow loops prior to 
the test section where quantities of interest 
are measured. 
Lagrangian steadiness requires different 
measures for ensuring these two cases: 

(1) 3̂ ≠ 3̂(0) ↔ Increase TZ[4 
(2) 3̂ ≠ 3̂(") ↔ Increase " 

These measures will shift the characteristic 
line in the Pipkin space towards the GNF 

regime. However, the flow must also be 
rheologically steady, i.e. no microstructure 
break-down and-build up must occur. This 
may even require larger observation times 
and/or development lengths than what is 
required to obtain e.g. constant/fully 
developed velocity profiles. A particular 
example is the fluid residence time in the 
flow loop section between the pump and the 
test section vs. the rheological time scales. 
The mean viscosity is to some extent defined 
by the pump rather than the wall shear in the 
test section if the distance pump to test 
section is not sufficiently long. Alternatively, 
tanks may be utilized to store certain amounts 
of fluid after the pump and allow for 
structural recovery. 
Obviously, both increasing T1[4 and " is 
restricted by laboratory constraints; hence, a 
trade-off analysis is required which provides 
an estimate of the error for the given 
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Figure 10. {Deth, With} = f(ReG), PS, PAC2. 

 

 
Figure 11. {Deth, With} = f(ReG), PS, PAC4. 

 
Figure 12. With = f(Deth), PS, PAC2. 

 

 
Figure 13. With = f(Deth), PS, PAC2. 

laboratory setup and assumed GNF 
behaviour. For the considered PAC solutions, 
the relative difference between the in-situ 
apparent viscosity and a GNF assumption, 
i.e. the equilibrium flow curve, may be in the 
order of 10…20% for a (comparatively large) 
step in shear rate (0.1 1/s to 1200 1/s and 
back)1, depending on T1[4. 
The issue of microstructural change on 
longer time scales in the order of 10³ s is also 
a problem when obtaining flow curves. 
Sufficient time must be allowed for a 
particular shear rate-apparent viscosity 
reading to obtain a full dynamic equilibrium 
and the true steady state apparent viscosity1. 
Care must be taken when reporting results in 
purely non-dimensional form. For higher 
Rea , viscoelastic effects in the form of 
normal stress differences become relevant 
and should be accounted for in the definition 
of Rea  12. 

Particle scale 
For a single particle > 0.1 mm settling in a 
quiescent PAC solution, DeGH are in the range 
0.1…10. This indicates that the effect of 
elastic wake and, for larger particles > 2 mm, 
the effect of particle acceleration may have a 
significant influence on the particle drag. The 
elastic effect on drag may be accounted for 
by the application of a viscoelastic correction 
to the drag coefficient13 and thus keeping the 
GNF formulation. 
For a single particle > 0.1 mm settling in a 
quiescent PAC solution, DeIJ  are larger than 
10. This indicates that the effect of 
microstructural changes may not fully affect 
the particle drag of a particular particle 
because ;3(=̇) is far from equilibrium. For 
the more generic case of an orthogonal shear 
flow, such as a particle settling in steady 
annular flow, =̇ is typically evaluated 
according to equation (6). 
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Figure 14. {Deel, Wiel} = f(ReG), PS, PAC2. 

 

 
Figure 15. {Deel, Wiel} = f(ReG), PS, PAC4. 

 
Figure 16. Wiel = f(Deel), PS, PAC2. 

 

 
Figure 17. Wiel = f(Deel), PS, PAC4. 

As a GNF, i.e. instantaneous, response to the 
induced shear rate is assumed, the non-
equilibrium rheological state may lead to an 
=5̇	error (≈10%)1 for DeIJ>10. The error is 
more severe the smaller =̇3 , i.e. the more 
quiescent the fluid is, for instance in the 
centre of the velocity field or when 
determining drag laws via settling 
experiments. Typically, drag laws are purely 
reported in the non-dimensional form Qj =
((k&5). Again, care must be taken to use the 
actual viscosity as seen by the particle and/or 
provide the error range based on the viscosity 
range ;D …;3	(γ̇5) and the rheological time 
scales. 
Particles following in the wake of a settling 
particle may see the altered fluid 
microstructure and hence experience a lower 
apparent viscosity. In addition, on a larger 
scale, multiple particles will lower the fluids 

viscosity for the thixotropic periods given in 
Table 3. 
For larger particles, particle acceleration is 
affected by the fluids rheological properties 
because the ratios F2/T5,BGH are approaching 
unity for larger particles (!5>1 mm and 
!5>0.1 mm for FIJ  and FGH, respectively). 

Transitional flows 
For the FS, transitional flows occur for higher 
velocities as Rea  exceeds 2100 (Figure 2, 
Figure 3). Here, turbulent drag (wall friction) 
reduction may be expected because the 
elasticity number14 El as the ratio of Wipq and 
Re is in the order of 10-3…10-2 (the latter being 
the magnitude for large 3̂  values) and a 
threshold for drag reduction14 is √s'≈0.0065. 
One may also expect some thixotropic effects 
to be present in the higher Rea  regions 
(Figure 2, Figure 3). A classical turbulent 
time scale is the large eddy turnover time 
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!J/ 3̂, i.e. equation (3) multiplied with 12, 
hence, a De based on the thixotropic time 
scale and the large eddy turnover time would 
still be significantly larger than unity. 
Furthermore, in the transitional flow regime, 
the viscosity ;3  and, following a Reynolds-
Averaged Boussinesq approach, the turbulent 
viscosity do have the same order of 
magnitude. 

CONCLUSIONS 
For the PAC solutions considered here, the 
GNF assumption does not hold for all 
investigated parameter ranges, including 
spatial and time scales. Increasing 
observation times and flow development 
length (and using tanks to ensure structural 
recovery) are measures that can be taken to 
ensure that experimental data is sampled at 
dynamic equilibrium for which the GNF 
formulation is valid. 
If results are reported in non-dimensional 
form, it is important to realize that the fluid 
viscosity, for instance in the denominator of 
k&a or k&5, is a transient variable and a flow 
kinematic dependent error in the order of 
10% may be introduced if the viscosity is 
simply based on a GNF constitutive equation. 
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