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ABSTRACT 
       Due to tectonic forces in the grain-
scales, minerals in clastic rocks get broken 
and/or rotated giving rise to pull-apart 
micro-structures. The matrix foliation 
moves into the offset generating passive 
folds. Assuming the matrix to be 
incompressible Newtonian viscous fluid, the 
passive folds are numerically analyzed in 
this work.  
 
INTRODUCTION 

 Clastic rocks are inhomogeneous, 
granular and are defined by a single or 
different species of mineral(s). Due to 
macro/micro-tectonic forces acting at 
small/grain scales, these minerals might get 
broken, separated and/or rotated. Such intra-
granular brittle fracturing and rigid body 
rotation of porphyroclasts are called as the 
pull-apart micro-structures. The fragments 
occur within the mechanically 
heterogeneous intensely sheared matrix. 
Careful analyses of these structures can 
provide a range of kinematic information 
about the deformation/rheology of the 
rock/mineral. In pull-apart micro-structures, 
mineral grains of different shapes undergo 
brittle fracturing, offset with respect to each 
other and/or rigid body rotation. The gaps 
created by these structures suck the matrix 
inside them, giving rise to passive folds. 
Pull-apart structures are not very abundant 
in micro-scales, but have the potential to be 

used as reliable kinematic indicators. 
Graphical analyses of passive folds, in this 
work, lead to their geometric classification. 
Assuming the matrix to be incompressible 
Newtonian viscous fluid, continuum model 
for the generation of passive folds are 
derived. The derivation is based on 
hydrodynamic theories, and highlights the 
controls of physical- and kinematic factors 
on their progressive development. The 
derivation is applicable for modeling the 
heterogeneous flow for (i) both equant- and 
inequant shaped inclusions, and (ii) simple 
shear deformation of the matrix.  
 
NATURAL OBSERVATIONS  

A variety of pull-apart micro-structure 
occurs in the mylonitized gneisses of the 
Zanskar Shear Zone (ZSZ), Western Indian 
Himalaya. The ZSZ is the tectonic boundary 
between the Higher Himalayan Crystallines 
in the south and the Tethyan Sedimentary 
Zone in the north.  

The studied thin-sections are 
perpendicular to the north-easterly dipping 
main foliation and parallel to the north-
easterly plunging stretching lineations. 
High-grade and rigid minerals viz. garnet, 
staurolite, and also alkali feldspar and 
muscovite occur as porphyroclasts floating 
in fine grained matrix of quartz, mica and 
feldspar. The matrix materials are 
presumably less rigid. 
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The Type-1 pull-aparts, characterised 
by parallelism between the fractured walls 
of the separated fragments, is not indicative 
of any shear sense (Figs. 1a, -d). In contrast, 
the ‘V’-pull-apart micro-structure with non-
parallel gaps between separated fragments 
is indicative of the brittle shear sense (Figs. 
1b, -e).  

 
 

 

  

 

 
 

 

 

     

                
 

          
 

Figure 1: Natural examples of V pull-
apart indicating top-to-SW sense of 
brittle shear, & parallel pull aparts 

indicating brittle extension parallel to 
the main foliation. From the Zanskar 

Shear Zone, western Indian Himalaya. 
(a) parallel type, alkali feldspar; (b) V 

type,  chlorite passive folded at the gap, 
shown by arrow; (c) V type, originally 
lenticular muscovite fish;  (d) parallel 

type, muscovite,, rigid body rotation in 
response to brittle fracturing took place; 

(e) V type, garnet. (f) & (g) are line 
sketches of (d) & (e), respectively. (a), 
(d) & (e) in cross-polarized light. (b) & 
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(c) in plane polarized light. Scale bar in 
each photograph: 0.8 mm. 

 
GEOMETRY OF PASSIVE FOLDS 

The amplitudes of the passive folds 
diminish away from the separation zone (the 
‘gap’). Twenty points of the parameters- T/

α, 
t/
α and α, as defined in Ramsay1, of these 

passive folds are plotted in Figs. 2a & -b. 
These data indicate the passive folds to be 
‘Class-3’.    
  

   
   

                       
 

 
 

Figure 2: Plot of passive folds in Ramsay’s1  
diagram. 

 
NUMERICAL ANALYSES 
 Referring to Fig. 3, let ABEF and 
CDEB are the cross-sections of adjacent 
segments of originally single rigid brittle 
object within infinitely extended Newtonian 
viscous medium of density ρ. Let the 
fragments have infinite width in the Z-
direction. This justifies the assumption of 
plane flow. Under the progressive simple 
shear condition, the viscous flow of the 
matrix exerts shear stresses over the object 
surfaces. The rotation of the smaller- and the 
larger fragments having angular velocities 
ω1 and ω2, respectively, in effect sucks the 
matrix inside the gap.  
 We now derive the radial- and the 
tangential velocity components useful to 
determine the kinematics of the generation 
of passive fold associated with different 
kinds of pull-aparts. 

The velocity field is defined in the 
(r,φ,z) cylindrical co-ordinate (Fig. 4), as 
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 whose radial component, with the 
unknown function: ƒ(r), is 
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 The velocity of the bottom- and the 
upper fragments, respectively, are 
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The continuity equation of integral form 

is given by 
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 The integral is carried out over the 
sketched control volume (Fig. 4 and its 
caption), which also coincides with the 
material volume. The movement of the 
fragment causes the fluid to move into the 
control volume via surfaces S1, S2 and S3. 
The left hand side of (5) can be written as 
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since ρ is constant.  
 

 
 
 
 

Figure 3: (a) Geometrical representation of 
two segments of an object in a co-ordinate 
frame x, y; the arrows on- and inside the 

boundaries indicate the shear stresses 
exerted by a viscous flow and the resultant 
forces on the segments, respectively. Here 
the pulling force Fu=2F1   and the coupling 

force Fr =(Fu-F1);  (b) Brittle fracturing 
followed by rigid body rotation under 

progressive-deformation. 
 
 The surface integral is carried out over 
the entire control volume  
 
                 (7) 

The kinematic boundary condition 
requires that the normal velocity component 

.u nr r  of the flow at surface S1 is equal to the 
normal component of the plate velocity. 
This requirement leads to, from Eq. (7), 
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In Eq. (8), the integration 
0

b

∫ represents 

the extension in Z-direction. The integral is 
assumed to be infinity and can be cancelled 
out. Thus Eq. (8) leads to, 
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From Eqs. (2) & (8), the radial velocity 

component is given by 
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Using the differential form of 

continuity-equation, we calculate ( , )u rϕ ϕ , 
with the boundary condition   
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 From Eqs. (9) and –(10): 
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Integrating (11): 
 

                                                          (12)    
 
 
Now, considering the flow to be 

symmetric with respect to the X-axis, 
         
    ( , ) ( , )u r u rϕ ϕϕ = − −ϕ                (13) 
 

 From  Eqs. (12) &-(13), 
 
  
 

 Using this in Eq. (12), the tangential 
velocity component is given by:  
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Figure 4: Geometric representation of 
adjacent segments of an object in co-

ordinate frame x, y. The control volume 
is defined by the dotted arc and the lines 
EB and EC. Relative rotation of smaller 
fragment CDFE with respect to larger 

fragment ABEG, with respect to X-axis, 
generates the pull-apart and the 

separation.  
 
 

CONCLUSIONS 
 (1) We provide natural examples of 
pull-apart micro-structures from the oriented 
thin-sections of the Zanskar Shear Zone, 
western Indian Himalaya. (2) The 
asymmetry of the ‘V’ pull-aparts relative to 
primary shear plain gives top-to-SW sense 
of shearing. (3) The passive folds belong to 
the Class-3 of Ramsay1. (4) The genesis of 
the passive folds depends on (i) the aspect 
ratio of the brittle porphyrocalst before 
fracturing, and (ii) the rigid body rotation of 
the grain fragments. (5) The kinematics of 
the passive folds depends on the radial- and 
the tangential velocity components of inflow 
of the matrix at the separation/gap.    
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