
ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 18, 2010 

 

 

ABSTRACT 

Irreversibility and dissipation are closely 

related. The flow of technical fibre 

suspensions with fibres enough large to be 

observed by eye is well suited to investigate 

the mechanisms behind the irreversibility. In 

the first part of this work such mechanisms 

in a compressive flows of a technical wood 

fibre suspensions are discussed. In the 

second part the results are generalised to 

more general non-fibrous flow systems. The 

work ends with some more philosophical 

reflections regarding the relation between 

irreversibility and dissipation. 

 

INTRODUCTION 

The flow of different technical fibre 

suspensions has been thoroughly studied 

experimentally as well as theoretically by 

the author.
1-11

 Technical fibre flow is here 

defined as about the opposite of dilute fibre 

flow, i.e. the fibres move in more or less 

stationary groups called flocs. Due to the 

basically non-attractive nature of the fibres, 

such flocs exist only under crowded 

conditions, i.e. surrounded by other flocs 

and/or boundaries. Otherwise these non-

coherent structures would separate into 

fibres under flow. Surfactants may modify 

this basic behaviour. 

Historically fibre flow modelling rather 

early turned to dilute conditions and 

individual fibre flow. As a result the fibre 

flocs almost automatically became regarded 

as the outcome of a flocculation process of 

mechanical or chemical/electrostatic nature. 

The historic background and the resulting 

turn to a microhydrodynamic approach has 

been explained by the author.
12-15

 This type 

of floc formation is, however, neither what 

normally occurs in technical fibre flow 

systems nor relevant for the process 

dynamics. Here instead the flocs normally 

form through the successive break up of an 

initial fibre network and successive 

dilutions.
16

 Even when in some few cases, 

the flocs actually form through a 

flocculation process, as e.g. in mycelial 

fermentations starting from spores, the 

crowded conditions are soon reached due to 

the growth of the mycelium, so that also 

here the crowded conditions become 

relevant for the process dynamics and the 

process result.  

Due to mathematical and computational 

difficulties associated with the microhydro-

dynamic method, it has in addition not been 

possible to advance further along this path 

than to the formation and break-up of 

individual flocs of identical model fibres. 

With realistic technical conditions still so 

extremely far away, it seems highly doubtful 

if such conditions can ever be reached this 

way, and also what the scientific as well as 

the practical purpose of it would be. 

The author’s starting point has instead 

been the fibre flocs and their properties. As 

will be demonstrated in the first part of this 

work, this results in affordable mathematics 

as well as a more profound and intuitively 

easier physical understanding of many 

central phenomena in technical fibre flow. 
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Figure 1. Floc passage through a contraction under technically realistic conditions. Two floc pairs 

traced out from video frames. Channel y-height 1.3 cm. Linear exit velocity ca. 35 m/s.

 

 

COMPRESSIVE FIBRE FLOW 

The technological background in paper 

making of the compressive fibre flow shown 

in Fig. 1 can be found in ref. 16.  The fibre 

suspension is forced into a converging 

channel. Two flocs pairs (one central with 

smaller flocs and larger off-axis located) 

have been selected and traced out from the 

high-speed video frames. The development 

of the form and separation of the flocs has 

been followed through the channel. The 

crowded conditions that prevail throughout 

are indicated at the entrance in (a). The fibre 

concentration is here just about 0.5% by 

volume, but the high fibre aspect ratio 

(about 100) nevertheless makes the flow 

conditions crowded.   

The subsequent development of form 

and the size of the flocs is modelled with the 

  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 2. Flow geometry in the contraction with 

a floc module pair. Floc z-compression is 

proportional to the channel height h.   
 

module suspension theory, which is based 

on compressible and dividable porous model 

flocs suspended in a much less compressible 

medium (quasi-incompressible), Fig. 2.   

 

 

 

 

 

 

 

 

 

 

 
 

                   (a)                      (b)                          (c)                             (d)                                  (e) 

 
Figure 3. Comparison between experimental and theoretical floc size and floc separation  

during the passage of the contraction. The series with irregular flocs are copied from Fig. 1. The 

rectangular modules are circumscribed the flocs in (a) and then developed theoretically. 



 

 

 

 

 

 

 

 

 

 

 
                        (a)                         (b)                            (c)                             (d)                                       (e) 

 
Figure 4. Comparison between experimental and theoretical floc size and floc separation 

during the passage of the contraction of the small axis-located floc pair. The upper series is 

experimental. In the lower series, the first floc pair is copied from the first floc pair in the upper series, 

and has been subjected to theoretical deformations and separated according to the plane squeeze-out 

model with help of the graphic program (Illustrator). 

 

In Fig. 3 a comparison between the 

developments of the video filmed flocs and 

the theoretical modules can be made. It is 

found that the agreement is as good as can 

be demanded both regarding floc size and 

floc separation.  

The module theory may, however, also 

be applied directly on the traced-out flocs by 

exact non-isotropic scaling in the same 

graphic program in which they are drawn. 

The result is shown in lower row of Fig. 4. 

Disregarding shape details (that are due to 

irregular influences from surrounding flocs 

and therefore cannot be included in the 

model), the agreement between experiment 

and theory is good, especially comparing 

with what has been achieved (or will ever be 

possible to achieve) with fluid dynamic 

methods. This, of course, is due to the fact 

that the module theory is based on physical 

insights that transcend the content in the 

traditional flow theories. 

In the upper rows of Figs. 3 and 4, one 

can observe that the foremost floc has been 

squeezed apart between (d) and (e) and the 

arrows. How much a suspended floc needs 

to be compressed before it starts to separate 

depends upon the ratio floc size to fibre 

length, see Fig. 5. Here this ratio is about 

five, and the module theory also affords to 

predict this separation strain reasonably 

well. The module theory is here also based 

upon a zero network Poisson ratio, i.e. that a 

floc  compressed  in  one  direction  does not  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 5. The three-dimensional crunching of a 

suspended fibre network. Three cubic flocs side 

by side, with penetrating surface layers of one 

fibre length are compressed uni-axially just until 

separation at strain at –0.31, and then somewhat 

further. 

 

expand at all in the two perpendicular 

directions. This agrees well with what is 

observed for such flocs, and can easily be 

understood at such low concentrations as 

about 0.5% by volume and with the fibres 

not very tightly held together. Finally, the 

module theory here also makes use of the 

fact that the liquid compressibility is small, 

i.e. its Poisson ratio is about 0.5.  

Before continuing, something ought to 

be said about the mechanism behind this  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

                   (a)                                                           (b)                                                        (c)                       

           

Figure 6. (a) & (b) Channel plug flow break-up patterns.
2
 Paper pulp concentration about 3%. 

Contraction entrance 20 cm wide. Compressive flow in (a) and expansive in (b). (c) The  surface 

pattern from stirred tank in an evaporated milk plant. The plug is assumed to be pressed outward 

against the tank wall by an over-pressure existing in the sheared zone, which in turn may be a result 

from centrifugal forces due to rotation of the sheared zone and/or upheaval from a pitched impeller at 

the tank bottom.  Tank diameter ca. 4 metres. 

 

floc compression. The flocs forced through 

the contraction at high speed are  probably 

not in constant contact but bump against 

each other. The same Poisson ratio 

difference effect is, however, also observed 

when the floc definitely are in constant 

contact with each other as in the plug flow 

into a contraction shown in Fig. 6a. Here 

also the formation of compressive stress/floc 

chains from which the liquid is squeezed out 

can be observed. When the flow direction is 

switched by 180° to a flow out of the 

contraction as in Fig. 6b, the compressive 

stress chains are switched by 90°. The 

consequences of this asymmetry will be 

discussed later. That the network Poisson 

ratio is small even at “higher” fibre 

concentrations is supported by photographs 

like in Figs. 6a and 6b since it cannot be 

observed that floc/stress chains that have 

been compressed further into the contraction 

are wider than those at the entrance, and in 

6b that those to the left not wider than those 

to the right.  

Also for flows into a contraction with 

fibre concentration enough low (about 

0.05% but flocs still present) that the flocs 

move more individually, the same 

compression effect (but here due to flow 

around and/or through the flocs) could be 

observed in a video sequence (ref. 16) and 

also tendencies to streak formation similar 

to in Fig. 6a. This type of floc compression 

therefore seems to be more general, and why 

it should change to e.g. the opposite when 

the concentration is gradually lowered is 

basically difficult to understand. 

 

OTHER MATERIALS 

When trying to understand the behaviour 

of these materials, especially the 

mechanisms behind the flow structures, one 

easily starts to see similar patterns all 

around. E.g. the flocky structures in flowing 

fibres suspensions under certain conditions 

are strikingly similar to cloudy skies 

although the underlying mechanisms can 

have little in common (in about the same 

way as two parameter of the same 

dimension mechanistically may have little in 

common
17

). If, however, it is known that the 

inner structure of a material is about the 

same as in technical fibre suspensions, i.e. 

flocky and open, and a similar pattern is 

observed, one may suspect a similar 

underlying mechanism. Fig. 6c shows just 

one example of this. This picture is a part of 



a larger photograph in an annual report from 

Nestlé. The arm in the foreground gives the 

scale. 

 

IRREVERSIBILITY 

Let us then focus on the reversibility of 

such systems. To avoid the complication of 

floc rotation caused by the drag from the 

walls,
16

 we consider the central floc pair and 

their modules in Fig. 3. We will as usual 

assume that the network Poisson ratio is 

close to zero in the following principal 

discussion. To focus even more on principal 

aspects, we will just make use of the first 

and last frame, i.e. (a) and (e). The complete 

series would add nothing in this respect. To 

initially avoid also the complication of floc 

splitting, we will first treat the trailing floc 

separately.  
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Figure 7.  A compression followed by an 

expansion does not lead back to the initial state. 

 

What Fig. 7 shows principally is that for 

these systems a compression followed by an 

expansion does not lead back to the initial 

state. The sequence may then be repeated 

whereupon the floc is compacted further. 

What will happen next depends on 

circumstances.  

The least eventful scenario then is that 

an elastic counter-response of the 

compacted fibre structure sets in and 

gradually increases until a steady-state floc 

size is approached.  After this the system in 

Fig. 7 becomes reversible. 

 
 

 

 

 

 

Etc. 

 

Figure 8.  A compression leading to a splitting 

followed by an expansion also leading to 

splitting. 

 

Another scenario is that the like the 

leading small floc as in Figs. 2 and 4 is 

squeezed apart in two daughter flocs before 

this steady state is reached. For simplicity 

we will in Fig. 8 carry out the discussion 

just in module terms. This sequence can also 

be repeated down to the smallest units 

(ultimately elementary particles, or possibly 

even further). 

A third scenario that can be imagined is 

that the network structure collapses into 

something more compact. This case will be 

discussed separately in next section. 

Various combinations of the sequences 

can easily be imagined, but we will here just 

shortly discuss the physical background for 

the asymmetry-induced irreversibility. 

The squeezing apart of these suspended 

loose floc systems relies on that the 

compressibility of the flocs is smaller than 

of the suspending medium, which here are 

almost zero and about 0.5, respectively. 

Although materials exist with negative 

Poisson ratios, they are exceptions. This less 

common property normally relies on 

changes of tertiary structures, to borrow 

protein nomenclature (e.g. of fold out type).  

The same reasoning may also be applied 

for particles in space in general if the 

particles move around thermally and in 

thereby even out their relative position in 

space. And from this point of view, what 

can be more incompressible than space 

itself? One must go to stellar scales (and/or 

quantum speeds) to find effects that 



theoretically need to be described as 

deformation of space (-time) itself, or rather 

a modification of a flat space). Therefore, 

one may here let the Poisson ratio for space 

itself to be 0.5. A Poisson ratio < 0.5 

furthermore applies for most materials, as 

e.g. particles characterised by Lennard-

Jones pair-potentials. Basically this (in a 

soft way) reflects that two similar particles 

with physical extensions cannot be 

simultaneously at the same place (exclusion 

principle, Pauli).  

The above method of separating material 

through crunching (as in milling) seems to 

be the primary, both practically and 

theoretically, since it is always possible to 

squeeze something between two walls (or a 

bed of similar particles). To tear apart a 

particle one must get a grip of it, which may 

be difficult for very small particles like 

atoms. Therefore, these are instead split by 

bombardment rather than tearing apart 

although this energetically would be 

energetically favourable for most particles, 

e.g. of Lennard-Jones type. This asymmetric 

(or non-isotropic) response of material is 

therefore thought to be them most basic 

asymmetry. 

 

ATTRACTION AT A DISTANCE 

The last mechanism to be discussed was 

inspired by the author’s interest in science 

history. Since the days of Newton, attraction 

at a distance like e.g. gravitation has been 

regarded as philosophically void (by e.g. 

Leibniz, Johann Bernoulli, and even Newton 

himself agreed), and it did not become the 

slightest less void with the relativity 

theories. The advantages of the latter 

theories were paid at the expense of 

necessity of accepting phenomena that are 

even more impossible to imagine in a 

philosophical sense. From a practical point 

of view, this sacrifice of course was well 

worth, but if two theories have equal 

predictive power, the one that can be 

understood in a philosophical sense of 

course is superior. 

This ongoing discussion led to the 

question if anything similar can be imagined 

 

 

 

 
 

 

 

Figure 9. Modelling technical fibre suspension 

with flocs characterised by loose springs that 

respond upon compression but separate upon 

expansion. Central floc movable, the other fixed. 

 

in these crowded non-coherent floc systems. 

The question has some connections with 

yielding but is not quite the same. To 

understand stress chain formation and flow 

phenomena (e.g. so-called turbulence 

damping) in loose floc systems, the spring 

model in Fig. 9 has been repeatedly used.
2
 

We will pursue with a variation on this 

theme, Fig. 10. The separation now takes 

place between the springs 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 10. Modelling a compressive stress chain 

by springs. Separation takes place between the 

springs. 
      

This theoretical stress chain is very long 

but can, in spite of its slenderness, not 

buckle. A pre-stress is necessary to keep it 

together.  The practical interest of it is 

doubtful, but it represents the least 

complicated case. Corresponding circular/ 

cylindrical and spherical cases are 

technically more relevant, Fig. 6c. At 

equilibrium, stress is constant throughout 



the chain. Now assume that the strain on one 

floc becomes so large that it collapses 

symmetrically into a more compact 

structure, i.e. the thick vertical line in Fig. 

10b. (In hard particle system the same may 

occur if a particle gets pulverised.) The 

same effect is obtained if a floc is picked out 

of the chain, or pushed out of the chain by 

the inner stress of the chain (a micro-

buckling). A collapse may also be caused by 

a local flow, i.e. the fibres start to slide 

against each other, cf. Fig. 6c.  Assume that 

another floc collapses some distance away 

and for simplicity simultaneously. As a 

result liquid-filled voids are created 

symmetrically around the collapsed flocs, 

Fig. 10b. For simplicity we also assume that 

the volumes of the collapsed flocs are much 

smaller than of the original flocs.  

Since the forces were equal before the 

collapsed these floc voids are filled up 

symmetrically by flocs from both sides, Fig 

10c. When the resulting deformation of the 

springs should be evened out, the same 

deformation should be distributed over more 

springs on the outside than between the 

collapsed springs. Therefore, the stress will 

decrease less in the outside than the inside, 

and the collapsed flocs be pushed towards a 

new equilibrium with stress evened out over 

the entire chain, Fig. 10d.  

This mechanism also is irreversible and 

through the flow induced in the suspending 

medium leads to dissipation, although it 

appears to be less fundamental that the 

Poisson ratio difference-induced dissipation. 

If the non-collapsed flocs were invisible 

(like e.g. nano fibres) but the collapsed 

structures were visible, one could imagine 

that they were drawn towards each other due 

to an attraction at a distance. This 

interpretation, however, relies on that the 

inner structure is over-looked, similarly to 

that a tunnelling effect may be imagined in 

the floc system in Fig. 9 if the inner 

structure is not taken into account
2
 (cf. e.g. 

Einstein’s and Born’s view of quantum 

mechanics). 

The force f needed to keep the collapsed 

flocs apart at their original positions is easy 

to calculate. If, for example, the springs are 

Hookean with a response g = k·(l–l0) with 

force-free length l0, l < l0 and 3 flocs 

between the two collapsed flocs, one obtains  

f =–kl/3, i.e. independent of l0. The result for 

other cases, e.g. with multiple collapsed 

regions, etc., is equally easy to calculate.  If 

the number flocs including and between the 

two collapsing sites are m and the number of 

collapses is r and s straightforward 

calculations give f = –k·(1–r–s)l/(m–r–s). 

In circular/cylindrical and spherical 

geometries, lateral circumferential wedging 

between the chains must be taken into 

account, but his does note make the algebra 

much more complicated (and results in 

exponential expressions). 

 

CONCLUSION 

The mechanistic origin of irreversibility 

in technical fibre flow has been investigated. 

It has been found to be the Poisson ratio (or 

rather the Poisson ration difference between 

the liquid and the fibre network) that 

irreversibly splits the network in smaller and 

smaller units (modules). It is suggested that 

this is the basic asymmetry. The module 

suspension theory reasonably well manages 

to predict this behaviour.  

To understand and describe the 

behaviour of technical fibre flow systems it 

has been found necessary to go beyond the 

traditional theories. One is then forced to 

tackle very basic question concerning the 

definition of solids and liquids, i.e. the 

mesomorphic problem. On the other hand 

one finds these technical fibre flow systems 

to be very well suited to probe such 

fundamental questions just because they are 

so easily obtainable and such basic 

phenomena can be directly observed for 

many natural fibres used in the industry. 
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