
 

ABSTRACT 
A comparative analysis is performed for 

time-dependent and viscoelastoplastic fluids 
using revised BMP+_τp and De Souza 
models. In the plastic-regime (Q<<1;β≤10-

1): yield-stress and strain-hardening promote 
solid-like features (augmented unyielded 
regions), whilst elasticity stimulates 
asymmetry. In the viscoelastic regime 
(Q>1;β≥10-1): there is complex interplay 
between pure-extension (centreline) and 
pure-shear (walls/recirculation-zones; lip-
vortices).  

 
INTRODUCTION 

Viscoelastoplastic fluids exhibit a so-
called ‘yield stress’, that governs the 
transition from solid-like to liquid-like 
response, in combination with viscoelastic 
features. These fluids develop stagnation 
regions, where the material does not deform 
plastically due to elastic resistance from the 
microstructure. Hence, their velocity 
gradients vanish in these regions1. This 
study is concerned with viscoelastoplastic 
flow using thixotropic constitutive equations 
in complex flow. The rheology of worm-like 
micellar systems dynamically adjusts to 
conform to prevailing environmental 
conditions, hence the term ‘smart 
materials’1,2. These are amongst the many 
features that render such systems as ideal 
candidates for varied processing and 
industrial applications. Examples of typical 
industrial applications of relevance include - 

use as drilling fluids in enhanced oil-
reservoir recovery (EOR), additives in 
house-hold-products, paints, slurries, pastes 
and some food products, pastes, some food 
products cosmetics, health-care products, 
and as drag reducing agents1,2. In this study, 
the plastic regime is studied at low flow-
rates (Q) for extremely concentrated fluids 
(solvent fraction, β<10-1). Here, elasticity-
increase causes asymmetry about the 
contraction-plane, whilst yield-stress and 
enhanced strain-hardening promote solid-
like features, apparent through augmented 
unyielded regions and rising pressure-drops. 
Concerning viscoelastic response (larger-Q; 
minimised plasticity; β=1/9), vortex-
structure reflects a complex interplay 
between the pure-extensional centreline-
flow and the pure-shear flow deformation 
along the walls and in recirculation-zones  
 
GOVERNING EQUATIONS & 
THEORETICAL FRAMEWORK 

In non-dimensional form, the mass and 
momentum equations may be expressed, 
under incompressible and isothermal 
conditions, as:  
 

0∇⋅ =u ,    (1) 
 

Re - Re p
t
∂

=∇⋅ ⋅∇ −∇
∂

u T u u .  (2) 
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Here, t represents time, spatial-gradient and 
divergence differential operators apply over 
the problem domain, with field variables u, 
p and T of fluid-velocity, hydrodynamic-
pressure and total viscoelastic-stress 
contributions, respectively. Then, the total 
viscoelastic-stress (T) may be segregated 
into two parts:  a solvent-component sτ  
(viscous-inelastic 2s β= Dτ ), and a 
polymeric nonlinear-component pτ . Though 
plasticity may be introduced into either 
solvent or polymeric components, or indeed 
both, here the theme is to consider only 
contributions arising from those of a 
polymeric source. =D (∇ +∇u u T)/2 is the 
rate-of-deformation tensor, for which 
superscript ‘T’ denotes tensor-transpose 

operation. A characteristic time L
U
⎛

⎝
⎜

⎞

⎠
⎟  is used 

to non-dimensionalise time t and  D , where 
U  and L  are taken as characteristic velocity 
and length, respectively; internal stress and 
hydrostatic pressure are normalised with a 
characteristic stress measured at the so-

called first Newtonian plateau 
  
ηp0 +ηs( )UL . 

In addition, this provides for a reference 
viscosity zero shear-rate viscosity, 0η η+p s , 
in the viscoelastic regime, with zero-rate 
polymeric-viscosity 0η p , and sη  the constant 
solvent-viscosity. Based upon these 
definitions, a solvent-fraction 

( )0β η η η= +s p s/  may be adopted, 
extracting the non-dimensional group 
Reynolds number ( )0ρ η η= +p sRe UL / , 
with material density, ρ . Elasticity is 
interpreted through the non-dimensional 
group Weissenberg number, 1λ=Wi U / L , 
defined on the product of a characteristic 

material relaxation-time ( 0
1

0

η
λ = p

G
), and a 

characteristic rate-scale (U /L ; inverse of 
the characteristic time). Hence, a general 

space-time differential statement for the 
stress equation-of-state may be expressed 
as: 
 

( )2 1 β
∇
= − −Dp pWi fτ τ ,  (3) 

 

where 
 
τ p

∇

 is the upper-convected derivative 
of extra-stress. In addition, the material 
structure is incorporated through the pre-
functional f , which products the polymeric 
stress. 
 
The BMP+_τp model 

Considering derivation through the BMP-
family of thixotropic constitutive models, 
the non-linear f-functional is related 
explicitly to the viscosity of the fluid, as a 
dimensionless fluidity1,2. In the present 
study, a novel and revised model-variant is 
proposed, via the so-called BMP+_τp 
model. This new BMP+_τp model enjoys 
such benefits as: the inclusion of a 
relaxation-time (elasticity) in the fluid-
structure construction-destruction dynamics; 
whilst retaining a modified non-linear 
destruction-term. These BMP+_τp features 
provide simultaneously two key 
experimental-manifestations in wormlike 
micellar and concentrated polymer solution 
rheology: first, a bounded extensional-
viscosity ηExt-response; and secondly, a first 
normal-stress in shear (N1Shear) with upturn 
at high deformation rates. Accordingly, the 
thixotropic BMP+_τp f-functional evolution 
obeys the partial differential equation: 
 

( ) ( )
0

1 1 ξ ξ
ω

∂⎛ ⎞+ ⋅∇ = − + −⎜ ⎟∂⎝ ⎠
u DG pf f Wi f :

t
τ

 
     (4) 

Here, dimensionless micellar-structure 
coefficients appear in Eq. 4 within the 
corresponding dynamic structure-
mechanism terms: structure-construction      
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(ω λ= s
U
L

) and structure-destruction           

( ( )
0

0 0
0ξ η η

η δ∞

= +
+G p s

k G  and 

( )0 0ξ η η= +p s
Uk
L

). 

In this analysis, numerical computations 
are performed with a hybrid finite 
volume/element time-stepping algorithm, of 
multi-stages per time-step; whilst 
incorporating an incremental pressure-
correction scheme. New and novel aspects 
to the computational procedures include - 
imposing velocity gradient boundary 
conditions at the flow centreline (VGR-
correction); a discrete correction for exact 
continuity-satisfaction; absolute-
representation for the constitutive-model 
structure function (ABS-f); and adopting 
solution continuation through steady-states 
whilst increasing flow-rate (and not fluid 
elasticity), see for example López-Aguilar et 
al.1,2. 
 
The De Souza model 

In the current study, the De Souza stress 
equation is re-cast into a split form 
= +s pΤ τ τ  (originally presented in total-

stress form; de Souza3, de Souza and 
Thompson4), with the solvent-contribution 
sτ  of constant viscosity Newtonian-type. 

Then evolution of the non-dimensional 
polymeric-stress component may 
represented as: 
 

( )1
2

β

λ

∇ −
= −Dp pm

Wi fτ τ ,  (5) 

 
where the f-functional is defined as 

( )0

1
η η

λ
= p pmf , the polymeric viscosity is 

( ) 0 1
λ

η
η λ

η

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

p
p

s

, and the structural 

modulus is ( )
0

1λ

λ
=s

m

G
G

. Note that the 

structure parameter λ  appears as an inverse 
factor in the dissipation-term in Eq. 5, but 
also within the f-functional and the shear-
modulus definitions. This suggests a more 
complex De Souza-type fluid-
structure/material-property dependency. 

Accordingly, the De Souza structure-
parameter evolution equation for λ is: 

 

( ) ( )1 1 1 λ
λ λ λ

ω λ

⎡ ⎤⎛ ⎞∂⎛ ⎞+ ⋅∇ = − + −⎢ ⎥⎜ ⎟⎜ ⎟∂⎝ ⎠ ⎢ ⎥⎝ ⎠⎣ ⎦
u

b
a a

ss
DS sst

 

     (6) 
where, ωDS=teqU/L is a dimensionless 
parameter for λ. As such, Eq. 6 states a new 
and corrected form of De Souza structure-
equation. This now follows the 
developments outlined by de Souza and 
Thompson4, and López-Aguilar et al.1, 
wherein any inconsistency in response noted 
in dimensionless stress, arising from the 
destruction term, has been accounted for. 
The exponents a, b and m are dimensionless 
positive constants (taken as unity in the 
present study). Then, the associated steady-
state structure parameter λss  is defined as: 
 

( ) ( )
0

η η
λ

η η

−
=

−
D

D
ss s

ss
p s

ln II ln
II

ln ln
,  (7) 

 
and the steady-state viscosity ηss

 is: 
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and the steady-state viscosity η
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In Eq. 8, the dynamic and static yield-stress 
parameters are 

0
τ  

and 
0

τ
d
, respectively; 

0
γ�

d
 

is the shear-rate that denotes the transition 
between 

0
τ  to 

0
τ

d
. Then, K and n are 
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consistency and power-law indexes, 
respectively. 
 
RESULTS 
 
Plastic regime 
 
Low flow-rates (Q≤10) and extremely high 
polymer concentrations (β≤10-1); Moderate 
Hardening fluids 
 

Fig. 1 illustrates De Souza solutions, 
upon selecting the highly-polymeric 
concentration (β=1/9) to establish a 
common comparison-basis with BMP+_τp 
predictions. The criterion to discern the 
yielded fluid from unyielded solid-like 
material is derived through the second 
invariants of polymeric-

stress, 21
2

ΙΙ =
p ptrτ τ . Then, at fixed Q=1 

and under yield-stress parameters 
τ0=τ0d=0.02, an X-shaped yield-front region 
is identified. This asymmetrical pattern 
about the contraction-plane, is retrieved 
from imbalanced unyielded-zones in the 
recess-corners. Subsequent and rising yield-
stress influence (τ0d≥0.05), renders 
shrinking double-claw unyielded regions, 
which are confined to the contraction-gap 
neighbourhood. Conversely, with Q-rise, a 
sequence of fixed-τ0d=0.1 solutions, 
commence from a symmetrical eight-petal 
and yielded-structure, which is confined to 
the constriction-zone. Then, at an 
intermediate Q-range (0.5≤Q≤1), the eight-
petal structure gives way to a four-
petal/shamrock-shaped unyielded-zone. 
Finally, at relatively high-Q (Q≥5), the ever-
expanding yield-fronts of the contraction-
flow zone, link-up with those from the 
upstream- and downstream-wall flow 
regions. Here, elastic-effects become 
prominent, with larger asymmetrical 
upstream yielded-zones appearing in the 
corner-recess regions. Comparatively, 
across models and at low flow-rates, 

BMP+_τp solutions (Fig. 2) reveal similar 
yield-front response to De Souza-solutions. 
In contrast however, at high flow-rates 
(Q>5), not shown) and extremely low 
solvent-fractions (β≤0.005), ever expanding 
yielded-regions are recorded that are slightly 
more prominent under De Souza 
representation, with marked asymmetrical 
unyielded-zones in the recess corners. One 
comments that, under BMP+_τp and with 
rise in polymeric-concentration - at low 
flow-rates, plastic features are promoted 
(see Q<5 solutions); whilst, at sufficiently 
large flow-rates, pronounced shear-thinning 
is provoked, resulting in enhanced fluid-
response type regions (see Q=5 fields). 

 
Viscoelastic regime 
 
Polymer-concentration (1-β)-variation; 
Strong Hardening fluids - BMP+_τp 

A range of solvent-fractions of β={1/9, 
0.5, 0.7, 0.8, 0.9} are studied (vortex-
intensity Ψmin Fig. 3 {β=0.5 and β=0.8 
results not shown}, streamlines Fig. 4), 
under strong-hardening SH-conditions, 
principally with focus upon vortex-phasing 
(lip-vortex formation). Under polymer-
concentration (1-β)-increase, Ψmin is 
reflected in Fig. 3. In general and upstream 
of the contraction, solute-content (1-β)-
increase elevates segregating response. With 
Q-rise, Ψmin appears flatter in solvent-
dominated fluids (β=0.9), whilst it sharply 
rises for highly-polymeric fluids (β=1/9).  
This is accompanied by a change in vortex-
cell shape and traversal of rotation-loci. As 
described under hardening-changes above, 
diminished downstream-activity appears to 
balance that in the upstream of the 
contraction; only adjusting with (1-β) 
change. With (1-β)-increase, yet still within 
the dilute-regime (β={0.8, 0.7}), Ψmin is 
seen to somewhat enhance with Q-increase; 
in the largest-Ψmin recorded (β=0.7, Q=10), 
Ψmin is some 4.5-times stronger than that 

J. E. López-Aguilar et al.

208



observed in the solvent-dominated β=0.9-
case (Fig. 3). Conspicuously, in terms of 
vortex-structure (of Fig. 4), from initial 
symmetrical streamline patterns (0.1≤Q≤1; 
somewhat distorted with increase in 
polymer-concentration), intermediate 
phases of sc/lip-vortex (lv) coexistence are 
recorded (1≤Q≤4). Notably, within the high-
Q range of Q≥5, each β={0.8, 0.7} solution-
set has an alternative and different response 
to Q-rise. Under β=0.8, the coexistent sc-lv 
structures coalesce, and a single sc-vortex is 
recovered. In contrast, at slightly increased 
polymer-concentration (β=0.7), the lv 
dominates and becomes an elastic-corner 
(ec) vortex. Finally under highly-polymeric 
fluids (β≤0.5), a steep Ψmin-rise is recorded 
with incrementation in flow-rate (Fig. 3). 
Such strong β≤0.5-Ψmin behaviour is 
reflected in a direct transition from sc- to 
ec-vortex formation (Fig. 4). 

CONCLUSIONS 
This study has facilitated comparative 

prediction for two new versions of 
thixotropic and viscoelastoplastic models 
(BMP+_τp and De Souza), under circular 
sharp-cornered contraction-expansion flow 
with aspect-ratio α=10. Two main flow-
regimes have been examined in detail under 
a flow-rate Q-incrementation procedure: 
firstly, under viscoelastic-response, in the 
high-Weissenberg setting; and secondly, 
under plastic-response, where predictions 
are explored for extremely concentrated 
fluids.  

For strongly-hardening (SH) BMP+_τp 
fluids and considering solute-concentration 
increase, predictions for various solvent-
fractions (0.9≤β≤1/9) reveal a complex 
evolution history, from salient-corner vortex 
activity for β=0.9, to strong elastic-corner 
vortices for β=1/9. Notably, intermediate 
β={0.7, 0.8} solutions display coexistence 
of both upstream lip- and salient-corner 
vortices; with greater polymer-
concentration, lip-vortices tend to dominate 

and generate elastic-corner vortices. Under 
the plastic regime, in extremely 
concentrated conditions (β≤1/9) and low-to-
moderate flow-rates (0.1≤Q(Wi)≤10) with 
Q-rise, BMP+_τp and De Souza yield-fronts 
reveal growing yielded-zones about the 
contraction-zone. These yielded-zones 
connect those arising in the constriction-
region to those around the upstream and 
downstream-walls; gradually becoming 
asymmetrical with elevation in elasticity. 
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Figure 1. Yield-fronts; De Souza MH fluids; β=1/9; τ0d={0.02, 0.1, 0.5, 1} 
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Figure 2. Yield-fronts; BMP+_τp MH fluids; β={1/9, 0.01, 0.005, 0.001} 
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Figure 3. Vortex intensity; BMP+_τp SH fluids; β={0.9, 0.8, 0.7, 0.5, 1/9} 
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Figure 4. Streamlines; BMP+_τp SH fluids; β={0.9, 0.7, 1/9} 
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