
ABSTRACT 
Due to their interfacial activity, microgels 

can be used to stabilize multiphase systems 
such as emulsions and foams. The 
stabilization efficiency strongly depends on 
the viscoelastic properties of the microgel 
monolayer at the interface. In this study, we 
investigate polyelectrolyte microgels that 
exhibit pH-responsive behavior. The 
interfacial rheological properties are 
measured both in shear and dilatation, and 
these properties are correlated with the two-
dimensional phase behavior of the microgels. 

 
INTRODUCTION 

Numerous industrial applications require 
precise control over the stability of 
multiphase systems such as emulsions and 
foams. Such systems are traditionally 
stabilized by surfactants or solid colloidal 
particles. However, for the past 15 years or 
so, microgels have been successfully 
employed for this purpose as well.1 3 
Microgels are three-dimensional, crosslinked 
polymer networks that are of colloidal size 
and swollen by the solvent i

.4,5 The properties of microgels can 
be conveniently tuned by tailoring their 
chemistry and architecture6, as well as by 
means of external stimuli (e.g. temperature, 
pH, light, or ionic strength). For example, the 
softness of microgels can be readily adjusted 
by varying their crosslink density or by 
switching between the swollen and collapsed 
state of the microgel. 

Microgels adsorb spontaneously to fluid 
interfaces, forming a well-defined 
monolayer.7 The mechanical stability of 
microgel-laden interfaces and, thus, emulsion 
stability is determined by the softness 
(deformability) of the microgels, as well as 
by the viscoelastic properties of the microgel 
monolayer at the interface.8,9 Due to the 
stimuli-responsiveness of microgels, 
microgel-stabilized emulsions (a.k.a. 
Mickering emulsions) can be broken and 
reformed reversibly by mild changes in 
external conditions.10 12 This makes stimuli-
responsive microgels ideal building blocks 
for smart emulsions. 

In this study, we investigate the 
interfacial rheology of poly-N-
isopropylacrylamide (pNIPAM)-based 
polyelectrolyte microgels both in shear (at 
constant area) and dilatation (at changing 
area). Furthermore, these observations are 
discussed in relation to the two-dimensional 
phase behavior of the microgels. 
 
EXPERIMENTAL 
Materials 

The investigated polyelectrolyte 
microgels were synthesized by Geisel et al.13 
by standard precipitation polymerization 
with surfactant. These microgels consisted of 
N-isopropylacrylamide (NIPAM), -
methylenebis(acrylamide) (BIS) and 
methacrylic acid (MAA). BIS acts as a cross-
linker, while MAA provides pH-
responsiveness. The carboxyl groups within 
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the MAA moieties are protonated at pH 3, 
while they are deprotonated at pH 9. The 
more pronounced swelling of the microgels 
at pH 9 (Rh,pH9 =  nm > Rh,pH3 = 146±1 
nm) is caused by 

 
The pH-dependent behavior of these 
microgels at the oil-water interface has been 
previously investigated by Geisel et al.14 and 
Schmidt et al.15 

 
Methods 

All interfacial shear and dilatational 
rheology measurements were performed on 
monolayers of the polyelectrolyte microgels 
at the n-decane/water interface at a constant 
temperature of 20 °C. 

For interfacial shear rheology 
measurements, a stress-controlled rotational 
rheometer (DHR-3, TA Instruments) was 
equipped with a modified double wall ring 
(DWR) geometry16,17. The DWR geometry is 
positioned in a custom-made Langmuir 
trough, allowing active control of the 
compression state of the spread microgel 
monolayer during the measurement of 
interfacial shear properties.18 Amplitude 
sweep measurements ( 0

s = 0.1-100 %) were 
performed at various surface pressures that 
correspond to the different regimes of the 
surface pressure-area isotherm19. Moreover, 
isochronal measurements at  = 1 rad/s were 
performed during the continuous 
compression of the microgel monolayer to 
obtain a more detailed picture of the surface 
pressure dependence of the interfacial shear 
properties. 
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