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ABSTRACT
Food 3D printing, is an additive manufactur-
ing process in which three dimensional edible
products with customized shapes and structure
are built layer by layer.

The relationship between the material’s rhe-
ological and heat transfer properties and the
process conditions was investigated, to predict
the stability of 3D printed structures. IR ther-
mography allowed measuring in-situ the cool-
ing kinetics of the printed material that is inter-
preted using a heat transfer model. Finally, a
model based on the yielding has been proposed
to understand the conditions leading to a stable
structure or to a collapse.

The results show that the printing velocity,
the environmental temperature play a crucial
role to ensure an appropriate cooling and struc-
ture stability.

INTRODUCTION
In the past years, 3D printing found applica-
tion in food manufacturing, giving a tool to de-
sign and create products with customized shape
and texture.1 Food products can be designed
and fabricated to meet individual needs through
controlling the amount of material and nutri-
tion content.2 Several food formulations have
been used to manufacture 3D printed struc-
tures such as mash potatoes,4 starch based
products5,6 pectin based foods,7 surimi,8 food
gels,9 sodium caseinate,10 vegetables and fruit
blends11 and even healthy snacks for chil-
dren.12

Food 3D printers often employ an extrusion
mechanism, where many phenomena occur si-
multaneously: the process is non-isothermal,

the materials flowing in the nozzle are non-
Newtonian, sintering occurs between different
layers, and the extruded material solidifies af-
ter deposition. The printing parameters affect
the material rheological, heat and mass transfer
properties.

Extrusion based 3D printing of plastic poly-
mers such as polylactic acid (PLA)13 and acry-
lonitrile butadiene styrene (ABS)1617,14 has
been studied in depth in the literature. The
material temperature is a key parameter dur-
ing the object manufacturing. In fact, the print-
ing material must be in a molten state when it
flows through the nozzle; whereas, after depo-
sition, it cools down and solidifies to guarantee
the stability of the 3D printed structure, dras-
tically increasing its viscosity, which follows
an Arrhenius law13 or a Williams-Landel-Ferry
model.15 Usually, molten polymers or suspen-
sions used in 3D printing show a shear-thinning
behaviour.13 The nozzle opening is placed at
a 90� angle respect to the build plate and the
shape of the deposited filaments is considered
elliptical since the layer thickness is usually
lower compared to the nozzle diameter15.17 In
order for the layers to bond the temperature at
the filaments’ interface has to be higher than the
glass transition temperature or crystalline melt-
ing temperature. A model to describe ABS fil-
ament welding has been used by Bellehumeur
et al.,16,17 who considered a Pokluda model for
Newtonian fluids to study the bridge growth be-
tween filaments. Sun et al.16 measured exper-
imentally the temperature layer deposition of
ABS filaments using thermocouples and pro-
posed a heat transfer model to predict the fil-
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ament temperature. Different printing param-
eters were investigated, finding that the "print-
ing strategy" and build plate temperature signif-
icantly affect the filaments cooling dynamics.
Seppala et al.14 used a IR camera as alternative
technique to thermocouples to measure the fila-
ment surface temperature in proximity the neck
between the two layers.

Chocolate has been often used in food
extrusion-based 3D printing because after de-
position it solidifies allowing to build 3D struc-
ture that self-support1 themselves under the
weight applied from the upper layers. Choco-
late is a dense suspension of non-fat parti-
cles like sugar and cocoa solids dispersed in
a continuous phase of cocoa butter.18 Molten
chocolate is a non-Newtonian fluid character-
ized from shear-thinning behaviour, yield stress
and a small degree of tixotropy. The yield stress
can be obtained from fitting extrapolation form
the Casson model, as recommended from In-
ternational Confectionery Agency (ICA) or the
Herschel-Bulkley model.19 Oscillatory rheol-
ogy, through stress sweep, were used to predict
the yield stress of chocolate mixtures, identi-
fied as the critical stress at the end of the linear
viscoelastic region.20

A chocolate 3D printer has been fabricated
from Hao et al. who studied the effect of differ-
ent printer settings and identifies nozzle diame-
ter, nozzle height and extrusion rate as key pa-
rameters for the 3D printing of a milk chocolate
mixture.21 Lanaro et al. presented the design
of a chocolate 3D printer and optimize cooling
rate of chocolate filaments, using an air cooler,
placed at the nozzle exit to improve the abil-
ity of chocolate layers to solidify and manufac-
ture self-supporting structures.22 Mantihal et
al. studied the effect of the geometry and inter-
nal structure of chocolate 3D printed product
on their texture and self-support properties.23

In this work, we have investigated the link
between material’s heat and rheological prop-
erties and the process parameters, in order to
predict the structure stability. IR thermography
was used to measure experimentally the tem-
perature profiles of the extruded material af-
ter deposition at different printing speeds and

build plate temperatures. The understanding
provided by this study can help optimising the
printing conditions of product formulation to
guarantee a satisfactory printing performance.

EXPERIMENTAL
A dark chocolate BC-811 (Barry Callebaut,
UK), containing 37.8% fat and 54.5% cocoa
solids, was used as printing material. Be-
fore printing, chocolate has been tempered, us-
ing a Mini Rev Tempering Machine (ChocoV-
ision, UK), increasing the chocolate tempera-
ture from 20 to 45 �C, to melt the cocoa but-
ter crystals and then cooled down to the printer
nozzle temperature (Tn = 32�C).

The molten chocolate rheological be-
haviour has been characterized using a rota-
tional rheometer Paar-Physica UDS2000 and a
cone and plate geometry (d = 23 mm ; q = 2�;
gap = 50 µm). The shear rate was varied be-
tween 1 and 60 s�1, based on the theoretical
estimation of the capillary flow in the nozzle di-
ameter of the printer (dn = 0.8 mm). The mea-
surement were performed at 32 and 26 �C. At
lower temperature the cocoa butter crystallizes.
Each test was repeated three times.

Finally the yield stresses, t0, has been ob-
tained by fitting the shear stress (t) versus
the shear rate (ġ) using a Herschel-Bulkley
model:19

⇢
t < t0, ġ = 0
t > t0, t = t0 +Kġn (1)

A Choc Creator V2.0 Plus (Choc Edge
Ltd, UK) 3D printers was used to manufac-
ture 3D structures by extruding thin layers of
molten chocolate from a moving heated noz-
zle onto a building plate. After tempering the
molten chocolate was loaded into a steel sy-
ringe equipped with a 0.8 mm nozzle, which
is wrapped in a heated jacket, to keep the tem-
perature constant at Tn = 32�C.

A simple "wall geometry", reported in Fig-
ure 1, consisting of 16 layers (L = 7 cm, hlayer
= 0.6 mm and h = 1 cm) deposited on the top of
each other has been designed, using FREECAD
software. Afterwards, it was imported in the
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printer’s slicer software were the printing pa-
rameters have been set and a G-code, con-
taining information on the printing path, print-
ing velocity and amount of extruded material
was automatically generated. During print-
ing, chocolate filaments were extruded from
the nozzle when it moves from y = 0 to x = L
at a set Vp; whereas the nozzle was translated
without extrusion in the opposite direction at a
travel velocity Vt , from y = L to y = 0.

Printing conditions were varied in order to
investigate their effect during the layers cooling
and the self-supporting stability of the printed
structures. The tested parameters such as build
plate temperature (Te), printing (Vp) and travel
velocity Vt are reported in table 1.

Table 1. Summary of printing parameters
tested during the manufacturing of 3D

structures.

Operating Conditions Range
Tn 32 �C
Te [18-22] �C
Vp [4-16] mm/s
Vt [4-12] mm/s

Figure 1. 2D Sketch of the 3D printed wall
structure with its dimensions. The region

where the temperature profile was evaluated is
highlighted in red.

The temperature profiles of the deposited
chocolate, during the 3D printing process on
different part of the structures’ surface, using
a IR Camera Testo 885 (S.A. Testo N.V, Bel-
gium), placed in front of the build plate, imag-
ing the y-z plane. During the structure manu-
facturing, video were recorded at a frame rate
of 33 Hz and a resolution of 320x240 pixel.
The red circle, in Figure 1, represents the point
where the temperature profiles were measured
over time. Finally, the height of the structure

has been measured at after the deposition of
each layer, using ImageJ. Every test was repeat
in triplicate.

RESULTS AND DISCUSSION
The stability or collapse of the printed struc-
tures will be discussed followed by the effect of
different environmental temperature and print-
ing velocities on the cooling kinetics. Finally
a simple heat transfer model to predict the fila-
ment cooling after deposition will be presented.

Stability of 3D Printed Structures

The environmental temperature and printing
speed have been varied systematically in order
to identify which conditions can lead to a suc-
cessfully manufacturing 3D chocolate struc-
tures and in which condition a collapse occurs.
We found that at a room temperature of 18 �C,
it was possible to manufacture structure at a
printing speed between 4 and 12 mm/s since
the cocoa butter crystallizes; whereas at a ve-
locity of 16 mm/s the deposited material does
not have enough time to cool down and the
structure collapses. At a Te equal of 20 �C, it
was possible to build structures only at a veloc-
ity of 4 mm/s since printing time is high and
the cocoa butter at the base of the structure has
enough time to crystallize. Finally, at a Te of
22 �C cocoa butter does not have time crystal-
lize leading to a collapse of the structure, even
at the lowest printing velocity Vp = 4mm/s.

Figure 2. Temperature distribution of a 3D
printed structure.

In Figure 2 is reported a IR image of a 3D
printed structure, showing that the temperature
is not uniform, due to boundary effects. In fact,
it is possible to identify a colder region where
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the heat exchange with the build plate occurs
and a warmer region on the top of the struc-
ture. Moreover, in the middle of the structure
the temperature is slightly higher. In table 2 are
reported the values of height (hc), time (tc) and
temperature of collapse (Tc), measured exper-
imentally at the conditions which lead to the
collapse of the structure. Measurements were
taken along the coordinate y= L/2. All the col-
lapses occur above the base of structure, where
the heat exchange is not quick enough and
therefore the deposited material takes longer to
cool down.

Table 2. Printing conditions leading to the
structure collapse: temperature (Tc), height

(hc) and time (tc) of collapse.

Te [�C] Vp [mm/s] Tc [�C] hc [mm] tc [s]
18 16 25.0 0.225 121.0
20 8 24.7 0.269 245.0
22 4 26.5 0.284 183.7
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Figure 3. Chocolate viscosity and shear stress
varying with the shear rate at different

temperature: T = 32 �C (dots) and T = 26 �C
(squares).

Chocolate viscosity (h), reported in Fig-
ure 3, drops when the shear rate (ġ) increases
showing a shear-thinning behaviour; whereas
the shear stress (t) increases with the shear rate.
Moreover, at a temperature of 26 �C the viscos-
ity and the shear stress increase due to the par-
tial crystallization of cocoa butter. Values of the
yield stress and consistency index of chocolate

have been estimated from the Herschel-Bulkley
model (Eq. (1)). Results are summarized in
table 3 and show a good agreement with the
model. It is possible to observe that at a tem-
perature of 26 �C the values of the yield stress
and the consistency index are higher due to the
partial crystallization of cocoa butter. It was
chosen to fit a single value of n equal to 0.9.
Table 3. Rheological parameters by fitting the

Herschel-Bulkley model.

T [�C] t0[Pa] K[Pa · sn] n R2

32 31.75 3.38 0.9 0.9894
26 38.28 7.17 0.9 0.9987

The step-wise increase in the stress acting
on the base of the structure (stheo), due to the
weight of the deposited material can be ex-
pressed as Eq. (2) where r and g are respec-
tively the chocolate density and the gravity.

Dstheo = rghlayer (2)

In Figure 4 is reported a comparison be-
tween the maximum theoretical (stheo) stress
predicted from the theoretical structure height
and sexp computed using the height measured
experimentally when the printing speed is 4
mm/s and Te = 22�C. The stress was evalu-
ated at the fourth layer of the structure. The
values of sexp match the theoretical values dur-
ing the deposition of additional four layers. At
the next step, however, sexp < stheo, indicating
that the material is flowing towards the bottom,
due to the gravity. Finally, when the height ex-
ceeds the yield stress at T= 26 �C (dotted line,
t0,T=26�C) the stress due to the weight of the
structure leads to the collapse.

Influence of Environmental Temperature

The room temperature, Te, has been varied be-
tween 18 �C and 22 �C. The temperature pro-
files, measured at the origin of the structure
(y,z) = (0,0), are shown in Figure 5. The
printing time has been normalized, dividing by
the characteristic process time: defined as the
time needed to return to the same y-coordinate,
(tp =

L
Vp

+ L
Vt

).
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Figure 4. Comparison between theoretical
(continuous line) and experimental stresses
(cross dots) acting on the 4th layer of the

structure and the yield stress (dotted line).
Te = 22�C and Vp = 4 mm/s.

The temperature profiles show a periodical
trend, where the temperature initially fluctu-
ates, due to the deposition of new hot material
on the same y-coordinate, and after the depo-
sition of the forth layer reaches equilibrium. It
was found that when the Te increases, the tem-
perature reached by the material at long times
is higher.
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Figure 5. Temperature profiles measured at the
structure origin, at Tn = 32 �C and Vp = 4 mm/s
at different room temperature respectively Te =

22 �C (red), Te = 20 �C (yellow), Te = 18 �C
(blue).

Influence of Printing Speed and Heat Transfer Model

The printing speed has been varied from 4 to 12
mm/s, keeping constant the nozzle and a room
temperature. Furthermore, a simple model,
proposed from Bellehumeur et al.17 (Eq. (3)),
has been adapted to investigate the cooling be-
haviour of deposited filaments.

T = (Tn �Te) · exp
�
� t

tc

�
+Te (3)

where tc was defined as the characteristic
cooling time and depends on geometry, process
conditions and the heat transfer coefficient. The
values of tc have been estimate fitting Eq. (3),
for the first cycle of cooling. Results are re-
ported in table 4. It has been found that in-
creasing the printing velocity the characteristic
cooling time increases, since more material has
to cool down through the same bottom surface.

A comparison between the model and the
experiments, during the first cycle is reported
in Figure 6. Temperature and time have been
previously normalized. It is possible to see that
the temperature reaches the equilibrium in ap-
prox. 40% of tp, and increasing the printing
speed slows down the cooling kinetics. Experi-
mental data have good agreement with the heat
transfer model.
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Figure 6. Comparison between experiments
(dots) and heat transfer model (line) of cooling

profiles for a Te = 18�C at different printing
speed: Vp = 4 mm/s (blue), Vp = 8 mm/s

(green), Vp = 12 mm/s (magenta).
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Table 4. Characteristic cooling time, tc, during
the deposition of the first filament at

Te = 18�C.

Vp [mm/s] tc,1st layer [s]
4 0.055
8 0.071

12 0.116

SUMMARY AND CONCLUSIONS
In this work, the effect of different process con-
ditions on the stability of 3D printed edible
structures was investigated. An IR camera has
been used to quantify locally the temperature
on the structures’ surface, during the printing
process, and the experimental data have been
interpreted with a simple heat transfer model
to predict the cooling dynamics of 3D printed
chocolate filaments.

Experimental results show that the cooling
kinetics of the deposited material and the over-
all structure stability were mainly affected by
the environmental air temperature, build plate
temperature and printing velocity. To manufac-
ture stable structures, during the cooling kinet-
ics of the extruded material, in every part of the
structure the yield stress should be higher than
the applied vertical stress. A simple model to
estimate the maximum theoretical stress sup-
ported from the local yield stress has been
proposed, in agreement with the experimental
data.

The results of this paper can be useful to op-
timize the printing condition based on the heat
and rheological properties of printing material
formulation.
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