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There have been a number of researches
on the calculation of molecular weight
distribution (MWD) from linear viscoelastic
data'”. Most algorithms adopted quadratic
mixing rule which was derived from double

reptation  theory™”. Although recent
molecular theories provide simulation
results ~ which  predict the linear

viscoelasticity of polydisperse polymer for a
given MWD, calculation of MWD is the
inverse problem. Hence, the success of the
inverse calculation needs accurate models
for the linear  viscoelasticity  of
monodisperse  polymer and effective
numerical algorithm such as regularization
method. Accurate molecular theories cannot
be used for this goal because use of these
models implies that we have to solve
nonlinear partial differential equation with
nonlinear fitting. Hence, we need analytical
model for monodisperse polymers. To the
authors’ knowledge, analytical equations
based on molecular theories are not as
accurate as phenomenological model. Well-
known phenomenological model is BSW

spectrum®. However, this model does not
provide analytical equation for dynamic and
relaxation moduli, which makes model
identification unnecessarily difficult. In this
talk, we suggest a simple phenomenological
model for loss modulus which allows us to
identify its parameters easily. We will
convert the loss modulus to relaxation and
storage moduli by use of the continuous
spectrum which can be obtained by the
Fuoss-Kirkwood relation™®. We expect that
the simple model will be used effectively for
the calculation of MWD.

Marin and Graessley’ reported that the
following phenomenological model is
capable of fitting linear viscoelasticity of
monodisperse polymer:
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where J(s) is the Laplace transform of
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creep compliance. It is usual that J, is so

small that it can be neglected. The two
parameters 77, and 7, have strong depen-
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Figure 1. Validity of modified Cole-Cole model.
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Table 1. Specific information of monodisperse
polystyrene.

Table 2. The list of the values of the parameters.

samples Myw [kg/molJ PDI
*PS6 2540 1.13
PS5 757 1.09
PS4 292 1.09
PS3 125 1.05
PS2 65 1.02
PS1 34 1.05
*mPS179K 179 1.09
mPS111K 111 1.07
mPS79K 79 1.04

k=1 k=2
Jy[Pa™']  21998x10°  5.2988x107°
o, 0.3481 0.5786
Ty [s] 2.4691x107*
v 3.4634
ng [Pa-s| 40.5956
r 4.1306
M. |kg/mol | 12.9412

dence on molecular weight while o, a,
and 7, should be independent of molecular

weight. For the polymers with wide range of
molecular weight, J, and J, seem to have

weak dependence of molecular weight.
However, they did not investigate
systematically molecular weight dependence
of the parameters because conventional
regression with respect to Eq. (1) usually
results in non-systematic dependence of
parameters on molecular weight. Hence, we
modified Eq. (1) relying on molecular
theories and observed molecular weight
dependence of zero-shear viscosity and

steady state compliance. We modeled
v-1
M M
M)=n: 1 ;
(1) g MM o

“1+M/(rM,)

7,(M)=1, (%)
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where M, is the entanglement molecular

weight. Since this model has 9 parameters to
be determined by regression and some of
parameters vary in logarithmic scale,
conventional regression such as Levenberg-
Marquardt algorithm is apt to fail robust
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* Schausberger et al., Rheol. Acta (1985)™°
** Jeon, thesis (2010)"!

results. Hence, we adopted Monte Carlo
algorithm.

Figure 1 shows the validity of the model.
The experimental data are those of
monodisperse polystyrenes measured by two
research groups. Table 1 is the specification
of materials and Table 2 is the list of the
values of the parameters.
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