
 

ABSTRACT 
A series of test-cases are solved 

addressing the non-linear rheological 
behaviour of a periodic array of non-gap-
spanning magnetic clusters suspended in a 
Newtonian fluid. Large amplitude 
oscillatory shear tests are conducted and the 
distinct rheology of the system is 
investigated using Chebyshev coefficients of 
the elastic and viscous stresses.  

 
INTRODUCTION 

Magnetorheological (MR) fluids are 
made by suspending micron-sized 
magnetizable solid particles in a non-
magnetic liquid. Due to their adjustable 
rheology, MR fluids are suitable for brand 
new active control systems. Conventionally, 
these fluids are modelled using the Bingham 
constitutive equation that is characterized by 
a yield stress1. However, there is still a 
limited literature thoroughly investigating 
MR fluids at the post-yield state. 

Upon the application of an external 
magnetic field, particles are arranged in 
chain-like clusters that can greatly resist 
flow2. Depending on the intensity of the 
magnetic field, size, and concentration of 
the magnetic particles, these chains can span 
the whole width of the test domain so that a 
solid-like viscoelastic behaviour is 
observed. By imposing a rather large shear 
strain, magnetic chains break most probably 
from their tips3, and ultimately a fluid-like 

behaviour is observed. At this point, 
magnetic clusters are majorly non-gap-
spanning. 

This work focuses on investigating the 
contribution of such non-gap-spanning 
clusters in the non-linear viscoelastic 
rheology of an MR fluid by systematically 
studying their role in determining the 
effective stress response of a magnetic 
suspension subject to the large amplitude 
oscillatory shear (LAOS) test. To achieve 
this, a direct numerical simulation (DNS) 
approach4 is employed. 
 
PHYSICAL MODEL 

In this work, nine neutrally buoyant 
para-magnetic circular cylinders are 
suspended in a Newtonian fluid and the 
resulting suspension is confined between 
two infinitely long oscillating solid walls. 
Magnetic clusters are formed under the 
influence of an external magnetic field with 
a flux density of 0B . The initial 
configuration is symmetric so that the centre 
of the magnetic clusters is positioned on the 
centreline of the channel. The physical 
model is schematically shown in Fig. 1. The 
governing equations and the numerical 
method were presented in an earlier work4. 

In order to study the effective rheology 
of the system, the (shear) stress response is 
calculated as 
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where xyσ  is the spatially averaged stress. 
For the sake of brevity, the over-bar sign is 
omitted in the following.  

 

  
 

Figure 1. Schematic of the physical model. 
The computational domain is marked with 

dashed-lines. Periodic boundary condition is 
considered at both sides of the domain. 

 
For all cases presented in this article, the 

ratio of the channel height and periodic 
width (of the computational domain) to the 
radius of the solid particles are / 20H a =  
and / 8L a = , respectively. The constant 
magnetic susceptivity is χ = 0.1, frequency 
of oscillations is ( )2 /Rad sω π= , and the 
particle Reynolds number is set to 
Rep = ρ !γ0a

2 /η0 = 0.003 , where ρ  and 0η  
are density and dynamic viscosity of the 
suspending fluid. !γ0 = 2U0 / H  is the 
amplitude of the (shear) strain-rate.  
 
RESULTS 
Conventionally, under an oscillatory shear 
strain, γ = γ0 sin(ωt) , the viscoelastic 
behaviour of the system is determined by 
calculating the average elastic modulus 

ʹG =
ω
π γ0

2 σ xy (t)γ (t)dt!∫ ,                          (2) 

and the dynamic viscosity  

ʹη =
1

πωγ0
2 σ xy (t) !γ (t)dt!∫ .                        (3) 

 In Figs. 2 and 3, Gʹ  and ηʹ  are shown as 
functions of 0B , respectively. It is seen that 
both Gʹ  and ηʹ  are increasing functions of 

0B , while the slope decreases by increasing 
the strain-amplitude. It is also worth noting 
that strain-softening and shear thickening 
behaviours can be observed in Figs. 2 and 3, 
respectively. That is, for the range of 0B  
considered in this work, by increasing the 
strain-amplitude, Gʹ  decreases, while ηʹ  
increases.  
 

 
 

Figure 2. Elastic modulus as a function of
0B  obtained for three strain amplitudes. 

 

 
 

Figure 3. Dynamic viscosity as a function of
0B  obtained for three strain amplitudes. 

 
However, unlike the small amplitude 
oscillatory shear (SAOS), in a LAOS test, 
the stress response is not a simple harmonic 
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function. Using Fourier series, it can be 
written as 
σ xy = γ0 Gń

n:odd
∑ (ω,γ0 )sin(nωt)

+ωηń(ω,γ0 )cos(nωt),
                 (4) 

where odd and even terms (with respect to 
the input strain) correspond to the elasticity 
and viscosity of the system, respectively5. 
Therefore, the average viscoelastic moduli 
only represent the linear rheology of the 
system, i.e. ʹG = ʹG1  and ηʹ =η1́ , and a more 
complicated framework shall be used to 
study the non-linearity of the results 
obtained in a LAOS test.  

Using the properties of the Chebyshev 
functions, the elastic stress (odd part of the 
stress response in Eq. 4) can be rewritten 
as6 

ʹσ xy (γ ) = γ0 en
n:odd
∑ (ω,γ0 )Tn (

γ
γ0
),                 (5) 

where ne  is the n th elastic Chebyshev 
coefficient corresponding to the n th 
harmonic of the stress response and Tn  is 
the n th-order Chebyshev function of the 
first kind. Similarly, the viscous stress 
becomes 

ʹ́σ xy ( !γ ) = !γ0 vn
n:odd
∑ (ω,γ0 )Tn (

!γ
!γ0
),                 (6) 

where nv  is the n th viscous Chebyshev 
coefficient. 

Considering that the intensity of the non-
linearity of the stress response is mainly 
determined by the third harmonic, Ewoldt et 
al.6 showed that the quality of the non-linear 
intra-cycle rheology can be determined 
using sign of the third elastic ( 3e ) and 
viscous ( 3v ) Chebyshev coefficients. That 
is, in a complete strain-cycle, strain-
stiffening and strain-softening are associated 
with positive and negative 3e , respectively, 
while shear-thickening and shear-thinning 
are associated with positive and negative 3v , 

respectively. These coefficients are shown 
in Figs. 4 and 5 as functions of 0B . As seen 
in these figures, 3e  and 3v  vary non-
monotonically by increasing the strength of 
the external magnetic field. 

 

 
 

Figure 4. Third elastic Chebyshev 
coefficient as a function of 0B  obtained for 

two strain amplitudes. 
 

 
 

Figure 5. Third viscous Chebyshev 
coefficient as a function of 0B  obtained for 

two strain amplitudes. 
 
For the whole range of 0B  considered in this 
work, 3e  is negative, which means an intra-
cycle strain-softening.  On the other hand, 
3v  is negative for 0 15( )B T<  and becomes 

positive above 15( )T . Therefore, the intra-
cycle behaviour is shear-thinning for 
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0 15( )B T<  and becomes shear-thickening 
for 0 15( )B T> .  
 
CONCLUSION 
In this work, the stress response of a model 
suspension of magnetic particles forming 
non-gap-spanning clusters was investigated 
by conducting LAOS tests. It was observed 
that the average elastic modulus is a 
decreasing function of the strain amplitude. 
Also, the intra-cycle behaviour of the 
system was strain-softening. On the other 
hand, the average dynamic viscosity 
increased by increasing the strain-amplitude. 
However, for the same range of intensity of 
the external magnetic field, the intra-cycle 
behaviour was shear-thinning. In this sense, 
as discussed in the literature7, the non-
linearity of the viscous stress response of 
this system is beyond its intra-cycle 
behaviour and it can be determined only by 
conducting further strain-sweep tests. 
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