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EXPERIMENTAL 
Aqueous dispersions of welan gum and 

kaolin have been tested and AWS effect has 
been evaluated.  

All the available ZZ, PP and KK sensors 
were used for measurements of the welan 
gum sample. The kaolin suspensions, which 
display rather viscoplastic behaviour with 
severely changing fluidity, were tested only 
in a KK sensor. 

 
Sample preparation 

Aqueous welan gum solution of 2%wt 
concentration was prepared by solving of 
the polymer powder in demineralized water. 
Resulting solution was gently stirred by a 
glass stirrer. Weak vacuum was applied to 
remove small dispersed bubbles. Few drops 
of 5% solution of phenol in ethanol were 
added to prevent biodegradation of the 
prepared solution.  

The kaolin dispersions (samples K40, 
K40H, K35, K30 correspond to kaolin 
content of 40%wt, 35%wt and 30%wt) were 
prepared from kaolin Sedlec 1a (produced 
by Sedlecky kaolin a.s., Czech Republic) 
and demineralized water. The sample K40H 
containing was prepared with an addition of 
0.15%wt sodium hexametaphosphate as a 
dispergator. In all the cases, demineralized 
water or solution of dispergator was added 
to dry kaolin and then the sample stayed for 
2 days. Then they were treated in ultrasonic 
bath for 30min (40kHz, nominal acoustic 
power of 30 kW.m-3) and finally evacuated.  

 
RESULTS & DISCUSSION 

Presented results can be divided into the 
two cases. First case is a class of methodic 
results where the common treatment of 
primary data from various viscometric 
sensors (ZZ, PP, KK) is documented. 
Second case is class of results obtained for 
the kaolin dispersions where the evaluating 
of AWS is possible only with the novel KK 
sensors.  

 

Methodic results 
Principal feature of the AWS viscometry 

is a measurement with at least two different 
h. Another option is to combine viscometric 
data from completely different types, e.g. 
PP, KK, and, possibly, ZZ. Only one data 
set from each viscometric sensor could be 
sufficient for AWS evaluation. Anyway, 
there is a risk of measurements with 
inadequate gap thickness and then AWS 
characteristics are not be reliably 
determined. Therefore, the experiments with 
more than one gap thickness for each 
viscometric sensor are recommended and 
combination of all registered data from all 
sensors is afterword applies. 

 
Welan gum sample 
The welan gum sample was tested on 

three types of sensors with eleven different 
gap thicknesses h. Results of common 
treatment are plotted in Figs. 5-7. Individual 
sensors are distinguished by symbol shape 
(KK , ZZ , and PP ), different h by 
the gray intensity. It can be seen from Fig. 5 
that the fluidity data are in a good agreement 
even for sensor ZZ with a large gap 
thickness, h = 1.69 mm.  
 

 
Figure 5. Fluidity of welan sample. 

The data for KK sensor are noted as circles 
, for Z40 DIN as diamonds, and for 

PP60 as triangles . The numerical labels 
give the gap thickness h in mm.  

Data on slip coefficient are rather 
scattered, see Fig. 6. It corresponds to the 
low level of AWS effect, occurring for the 
welan gum sample. A contribution of AWS 
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to total kinematic effect is about %AWS = 
30%, which is enough for detection but too 
low for a smooth data fitting. 

 
Figure 6. Slip coefficient of welan sample  

Data of extrapolated slip length b 
(compare with Fig. 1) are affected by scatter 
of slip coefficient, because they are 
calculated as a ratio of slip coefficient vs. 
fluidity, see Fig. 7. When b is comparable 
with the gap thickness h, then AWS effect is 
necessary to take into account. 

 

 
Figure 7. Extrapolated slip length as a 

function of wall shear stress 

 
Kaolin samples 

The aqueous kaolin dispersions are 
typical shear thinning (pseudoplastic or even 
viscoplastic) materials, widely used in 
ceramics or as a pigment in paper coatings. 
The fluidities of kaolin dispersions are very 
low and an additive is often used to 
increasing it (see fluidity of sample K40H in 
the Fig.  8). All kaolin dispersions data were 
measured with only KK sensor applying 
three gap thicknesses, h = 1.089 mm, 0.812 
mm and 0.628 mm. 

 

 
Figure 8. Fluidity of the kaolin dispersions. 

 

 
Figure 9. Slip coefficient of the kaolin 

dispersions. 
 

 
Figure 10. Contribution of AWS to total 

kinematic effect for kaolin dispersions for 
the three levels of gap thickness h. 
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Scatter of the slip coefficient, see Fig. 9, 
is wider in the range of higher shear 
stresses. There, the AWS effect is much 
weaker (below %AWS = 20%), see Fig. 10, 
because of severely rising bulk fluidity, 
apparent in Fig. 8.  

The extent of AWS effect depends also 
on the gap thickness h. It can be seen in the 
Fig. 10, where a triple of points at the same 
shear stress  corresponds to three 
aforementioned different gap thicknesses h. 
The highest point corresponds to the 
smallest gap. It is clear that the AWS effect 
influences flow mainly in narrow channels. 

 
CONCLUSIONS 

AWS rotational viscometry is discussed 
for three types of viscometric sensors. 
Aqueous solution of welan gum displaying a 
adequate AWS effect was chosen for 
demonstration of common approach to 
primary data treatment. Kaolin dispersions 
of various concentrations were tested on KK 
sensors for presence of AWS effect. Smooth 
data of slip coefficient with a little scatter at 
low wall shear stress, see Fig. 9, together 
with extremely high AWS contribution to 
total kinematic effect, see Fig 10, are 
evidence for AWS viscometry concept 
employment for such materials. 
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