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ABSTRACT
A numerical framework to simulate dispensing
of fluids with different types of complex rheol-
ogy is presented. The framework is based on an
incompressible flow solver that uses immersed
boundary methods and an automatically gen-
erated octree grid. It therefore supports simu-
lation with arbitrary geometry and of moving
application with various injection models with
minimum setup time. The framework also sup-
ports rheology models spanning from purely
viscous models to more advanced viscoelastic
stress models.

Three examples of applications are given,
namely for seam sealing in automotive bodies,
swirled adhesive extrusion and wire fed addi-
tive manufacturing of metal. The wide range of
applications shows the potential of the frame-
work and indicates that many more possible ap-
plications are conceivable.

INTRODUCTION
Processes that include dispensing of fluids with
complex rheology are common in various types
of industrial applications, e.g. seam sealing ap-
plication in automotive bodies, adhesive extru-
sion and additive manufacturing. As the de-
mand for tools to simulate and predict the out-
come of the processes increases, so does the
need for robust and efficient numerical frame-
works and models that accurately describe the
specific features of such flows. In this paper
such a framework is presented.

The simulation framework is based on
IPS IBOFlow R�, an incompressible finite vol-
ume flow solver developed at the Fraunhofer-
Chalmers Research Centre for Industrial Math-
ematics in Gothenborg, Sweden. The solver

has previously been used to simulate conjugate
heat transfer10, fluid-structure interaction12 and
two-phase flows with shear thinning fluids for
seam sealing11, 13, 15 and adhesive extrusion14.

For the flows in consideration, four com-
mon main properties can be identified,

1. Two-phase flow of the applied material and
the surrounding air

2. Moving application along a prescribed path

3. Arbitrary substrate geometry

4. Non-Newtonian material rheology

All these properties require careful modelling
in order to correctly account for them in simu-
lations.

Since non-Newtonian fluid flow is consid-
ered, a subject of importance is of course the
rheology model. For flow of viscoelastic flu-
ids it may be sufficient to use a purely vis-
cous model such as the Carreau model7, es-
pecially if the flow is dominated by inertia.
For flows dominated by elasticity, however,
the accuracy of such models are often insuf-
ficient as they lack the ability to store elastic
energy. For such flows the proper approach
is to instead use a constitutive model that de-
scribes the transient evolution of the viscoelas-
tic stress tensor. A wide range of viscoelastic
constitutive models can be found in the litera-
ture, ranging from simpler linear models such
as the Upper-Convected Maxwell (UCM) and
Oldroyd-B models2 and more physically accu-
rate nonlinear models such as the Phan Thien
Tanner (PTT) model1 and the Finitely Extensi-
ble Nonlinear Elasticity (FENE) models3. The
main improvement of the nonlinear models
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compared to the linear models is that they pre-
vent unbounded normal stresses by limiting the
extension of the polymers in the viscoelastic
fluid.

Another type of rheology that is considered
in this paper is temperature-dependent viscos-
ity. This is typically relevant for e.g. liquid
metal flow.

The aim of this work is to present the build-
ing blocks of a numerical framework for simu-
lating the flows discussed above and highlight
some example applications. The rest of the pa-
per is structured as follows. First the govern-
ing equations are defined, then the numerical
method is described. Finally three example ap-
plications are shown and some conclusions are
drawn. The examples are application of seam
sealing in automotive bodies, swirled extrusion
of adhesive and wire fed additive manufactur-
ing of metal.

GOVERNING EQUATIONS
The non-Newtonian fluid flow is described be
the incompressible momentum and continuity
equations

r ∂u
∂ t

+ru ·—u = �—p+— ·s + f, (1)

— ·u = 0, (2)

where r is fluid density, u velocity, p pressure,
t the deviatoric stress and f a body force. The
deviatoric stress is divided into a purely viscous
part and a viscoelastic stress as

t = 2µS+ tv, (3)

where µ is viscosity, S the rate of strain

S =
1
2
�
—u+(—u)T� , (4)

and tv the viscoelastic stress.
The non-Newtonian rheology models are

divided into two main categories. The first con-
sists of purely viscous fluids, for which tv ⌘ 0

and µ > 0 is a function of the local state of the
flow. Two such models are considered, one be-
ing the Carreau model, reading7

µ(ġ) = µ• +(µ0 � µ•)
�
1+(x ġ)2� n�1

2 , (5)

where ġ = |S| is the local shear rate, µ• and
µ0 the viscosities at zero and infinite shear rate,
respectively, x is a characteristic time and n a
power law index. The other viscous model con-
sidered is the temperature dependent viscosity
for liquid metals and alloys calculated as9

µ(T ) = µT
0 exp

✓
� EA

RT

◆
, (6)

where T is the local temperature, µT
0 a viscos-

ity constant, EA the activation energy and R the
ideal gas constant. In this case the temperature
is described by the heat transport equation.

∂T
∂ t

+u ·—T = — · ( kT

rcp
—T )+ST , (7)

where kT is thermal conductivity, cp heat ca-
pacity and ST a source term.

The second main type of rheology model
consists of the viscoelastic models, for which
µ � 0 is constant and tv is described by a con-
stitutive equation. In this work the linear form
of the Phan-Thien-Tanner (PTT) model is used,
reading

l
5
t v +

✓
1+

el
h

Tr(tv)

◆
tv = 2hS, (8)

where Tr(tv) denotes the trace of tv and
5
t v is

the upper convected derivative

5
t =

dt
dt

�—uT · t � t ·—u, (9)

where d/dt denotes the material time deriva-
tive.

The two-phase flow of the non-Newtonian
fluid and the surrounding air is modelled with
the Volume of Fluid (VOF) method. A single
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set of momentum and continuity equations is
then used for the whole domain and the respec-
tive phases are described by the local volume
fraction a 2 [0,1]. In areas where only air is
present a = 1 and in areas where only the non-
Newtonian fluid is present a = 0. A location
where 0 < a < 1 lies on the interface between
the phases. Local properties in the flow, e.g.
density or viscosity, are calculated as

f = afair +(1�a)fNN, (10)

where fair is the property of the air and fNN that
of the non-Newtonian fluid. The evolution of a
is described by the advection equation

∂a
∂ t

+u ·—a = 0. (11)

NUMERICAL METHOD
The simulations are performed with
IPS IBOFlow R�, which is an incompress-
ible flow solver. The key feature of the solver
is the use of immersed boundary methods in
combination with an octree grid that is auto-
matically generated and dynamically refined
near objects and interfaces. Finite volume
discretization of (1), (2), (7) and (11) is carried
out on the octree grid, and the SIMPLEC
algorithm is used to couple pressure and mo-
mentum. In each time step the following steps
are performed:

1. Calculate non-Newtonian stresses (µ or t)

2. Solve (1) and (2) iteratively for u and p.

3. Solve (11) for a

4. Solve additional equations (e.g. for T )

Boundary conditions from interior objects
in the computational domain are treated using
the mirroring immersed boundary method6, 8.
The velocity field is then implicitly mirrored
across the boundary surface, such that the
resulting velocity at the surface satisfies the
boundary condition for the converged solution.

There is therefore no need for a boundary fit-
ted grid. The combination with the automati-
cally generated octree grid is therefore highly
efficient for simulation of flow with arbitrary
boundary geometry and moving free surfaces.

Extra care needs to be taken for the dis-
cretization of (11) for a . Since the equation
includes no natural diffusion, it is important
to minimize the introduction of numerical dif-
fusion in order to maintain a sharp interface
between the phases. The compact CICSAM
scheme4 is therefore used.

An injection model is used to describe the
application of material with a nozzle moving
along a predefined path. The injection step can
be summarized in two main parts:

1. Refine octree grid in the neighbourhood of
injection.

2. Identify injection cells and add material by
changing a and setting the velocity.

The velocity in the injection cells is set to

uinj = uflow +uapp, (12)

where uflow is the injection velocity based on
the material flow rate and uapp the velocity of
the applicator. Due to possible geometry dis-
crepancies between the real nozzle shape and
the injection cells, a correction step is used to
control the inlet flow. In each time step the to-
tal volume of injected material in the domain is
calculated. A flow rate correction is then calcu-
lated as

V̇corr = max
✓

xs
Vtot �Vtot,nom

Dt
,xlV̇nom

◆
, (13)

where xs 2 (0,1] is introduced to give smooth
flow variations and xl 2 [0,1) enforces a lower
limit relative to the nominal flow rate. Vtot is
the calculated volume, Vtot,nom the nominal to-
tal volume, V̇nom the nominal flow rate and Dt
the fluid time step. The volume flow rate for
the injection is then calculated as

V̇ = xr(V̇nom +V̇corr)+(1�xr)V̇old, (14)
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where xr 2 (0,1) is a relaxation factor and V̇old
is the flow rate used in the previous time step.

A geometrical model is used to determine
the injection cells. The models depend on the
type of dispensing application, but can be di-
vided in two main categories:

• Direct injection.

• Projected injection.

In the direct injection approach the mate-
rial is injected at the nozzle opening and the
geometrical shape of the nozzle directly deter-
mines the injection cells. In Figure 1 an exam-
ple is shown of the injection cells for a circu-
lar adhesive nozzle. The octree discretization
with refinements are also shown along with the
bead, which is visualized with the contour sur-
face a = 1/2.

Figure 1. Injection cells (solid cubes) for a
circular nozzle model.

The projected injection approach relies on
the assumption that the flow of material from
the nozzle to the target surface has a large
stokes number, such that the effect of the sur-
rounding air is negligible. The simulation of
this part of the application may then be replaced
by a projection model. Injection is then instead
performed at the target surface, which signif-
icantly reduces the computational effort. For
more details, the reader is referred to13.

The non-Newtonian stresses are calculated
from the flow field. For the purely viscous
models the local viscosity is calculated di-
rectly from the velocity field using (5) or from
the temperature field using (6), depending on
which model is being used.

For the viscoelastic fluids, the constitu-
tive equation must be solved and the resulting
stresses must be coupled to the fluid momen-
tum equation. For this, a novel Lagrangian-
Eulerian method is used, in which the vis-
coelastic stresses are solved and stored in a La-
grangian node set that is convected by the fluid
and the stresses are interpolated to the Eulerian
fluid grid using radial basis functions (RBF).
The approach is motivated by the lack of nat-
ural diffusion in most viscoelastic constitutive
equations. The Lagrangian frame also provides
a natural description to transport the stresses re-
sulting from the deformation history of fluid el-
ements. An illustration of the concept can be
seen in Figure 2.

Figure 2. Sketch of stresses convected in a
Lagrangian node.

In each node the updated position and stress
are obtained by solving the system of ordinary
differential equations

⇢
ẋ = u
ṫv = G(tv,—u)

, (15)

where ˙(•) denotes time derivative and the right
hand side G(tv,—u) follows directly from (8).
The local properties needed for solving the
system, i.e. u and —u, are interpolated from
the octree grid to the current position of the
node. When (15) is solved and the updated
stresses are available in the Lagrangian nodes,
the stresses are interpolated to the cell centers
of the Eulerian fluid grid using RBF. An inter-
polant f̂ (x) of a function f (x) that is known in
a finite set of points is then calculated as the
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weighted sum5

f̂ (x) =
N

Â
i=1

wif(|x�xi|), (16)

where xi are the points where f is known, wi
the corresponding weights, N the number of
points and f(r) the RBF. The weights are deter-
mined by solving the linear system implied by
the constraint that the interpolant should be ex-
act where f is known, i.e. f̂ (xi) = f (xi) 8i =
1, . . . ,N. This gives

Aw = f, (17)

where

Ai j = f(|xi �x j|), (18)

w = [wi · · ·wN ]T , (19)

f = [ f (xi) · · · f (xN)]T . (20)

When the components of tv are known in
the cell centers they are integrated over the cells
using Gauss’s divergence theorem as

Z

cell
— · tdV = Â

f
A f n̂ f · t f , (21)

where the sum is taken over the cell faces and
A f , n̂ f and tv, f are the area, normal vector and
stress tensor at the respective faces.

RESULTS
In this section, three example applications are
presented. The examples cover the rheology
models and injection model approaches de-
scribed above.

The first example considers flat bead seam
sealing, which is applied in automotive bod-
ies to cover holes and cavities to prevent corro-
sion. The rheology of the shear thinning sealant

is described with the Carreau model with pa-
rameters µ0 = 264.76Pas, µ• = 3.096Pas, x =
0.4796s and n = 0.45359. The parameters
are determined by fitting the viscosity resulting
from (5) to data from a rheometer shear sweep.
The projected injection approach is used to de-
scribe the input of material into the computa-
tional domain. The flow exiting the sealing
nozzle consists of a thin bead, where the width
is a function of the distance from the nozzle
and the flow rate. The injection model is con-
structed by measuring the width at varying dis-
tance for a range of flow rates relevant for the
process. The data is used in the simulations to
reconstruct the bead and predict the impact at
the target surface with ray tracing. In Figure
3 an experimental bead and the corresponding
reconstructed bead from a simulation is shown.

Figure 3. Experiment (left) and reconstruction
in simulation (right) of the sealing bead in the

air.
A set of beads in the floor of a Scania truck

cab are simulated. The corresponding real
beads are 3D-scanned to enable comparison be-
tween the scanned and the simulated beads, re-
spectively. In Figure 4 an overview is shown of
the scanned truck floor and sealing beads. The
flow rates used to apply the beads vary between
15 ml/s and 35 ml/s and the movement speed of
the applicator is around 0.3 m/s to 0.5 m/s

In Figure 5 the simulated and scanned
beads, respectively, are shown in an area of the
truck floor. The bead passes a corner and in-
cludes an area with a thick sealant layer. High
flow rates and thick layers of sealant typically
increases the computational complexity of the
problem. It is observed, however, that the sim-
ulation gives an accurate prediction of the real
bead in this case.
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Figure 4. Scanned sealing beads in truck floor.

Figure 5. Simulated (left) and scanned (right)
sealing bead in the Scania truck.

In Figure 6 a similar visual comparison
between the simulated and scanned beads is
shown in an area where the bead is applied on
a vertical wall. This causes the sealant to flow
downwards along the wall before finally stick-
ing. The simulation captures the geometrical
features resulting from this scenario.

Figure 6. Simulated (left) and scanned (right)
sealing bead in the Scania truck.

A detailed comparison of the bead cross
section is performed in a relevant area for the
beads. The positions are defined in Figure 7. In
Figure 8 the comparisons in the cross sections
are shown. The results show that the simula-
tions are in good agreement with the scanned
data in the studied areas.

The second example is of extrusion of ad-

Figure 7. Cross sections (green planes) used
for detailed comparison of the sealing beads.

Figure 8. Detailed comparison of the
simulated and scanned beads in the cross

sections defined in Figure 7.

hesive material with a swirled nozzle. In this
type of application a very small circular noz-
zle rotates with high speed, forming a thread-
like spiral shaped bead in the air. The flow
exhibits a significant degree of elasticity, and
the viscoelastic PTT model is therefore used
to model the adhesive rheology. The parame-
ters l = 0.0821s, h = 3065Pas and e = 0.5
and µ = 60Pas are determined using rheome-
ter data from a shear sweep and an oscillating
frequency sweep.

A simulation is performed with the flow rate
1 ml/s and a rotation speed of 15000 rpm. The
nozzle diameter is 0.6 mm and the radius of
the rotation 1 mm. The movement speed of the
nozzle is zero, in order to focus on the effects
of the swirl technique. In Figure 9 snap shots
are shown for a time series in the simulation.
The spiral pattern of the flow in the air caused
by the stresses in the material is clearly visible.

The third and final example is of wire fed
additive manufacturing of metals, a process that
is used to build or repair structures with com-
plex geometry. A metal wire is continuously
fed to the focus spot of a laser beam, caus-
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Figure 9. Snapshots of E-swirl simulation at
2 ms (top left), 50 ms (top right), 100 ms
(bottom left) and 150 ms (bottom right).

ing the material to melt. The liquid metal then
flows onto the substrate surface and eventually
solidifies as it cools down.

The direct injection approach with a cir-
cular inflow is used for this application. The
viscosity is temperature dependent and is
calculated from (6) with parameters µT

0 =
1.665mPas and EA = 48.586kJ/mol. The heat
equation (7) is solved in the whole domain with
a conjugate heat transfer solver for the cou-
pled heat transfer between the solid, the liquid
metal and the surrounding air. The solidifica-
tion of the material is modelled by converting
fluid cells to solid cells if the temperature falls
below the solidification temperature.

A simulation is carried out of a straight sin-
gle layer. The inlet temperature is 5000 K and
the diameter of the inlet is 1.14 mm. The move-
ment speed is 14 mm/s and the flow rate is
0.34 ml/s. In Figure 10 the bead is shown at
time 50 ms and at 250 ms, respecively.

The temperature field is significant for the
rheology of the liquid metal. The tempera-
ture history can also provide input to the mi-
cro structure of the final product. In Figure 11
the temperature field at 250 ms is shown in the
substrate and the bead, which has been clipped
to make the result inside the bead visible. The

Figure 10. Simulation of wire fed additive
manufacturing with bead (contour of a = 1/2)
and injection cells (solid cubes) at time 50 ms

(left) and 250 ms (right).

resulting viscosity in the bead is also shown.
As can be expected, the temperature is very
high near the injection area but decreases fur-
ther away. At a certain distance from the injec-
tion the temperature is sufficiently low for the
metal to solidify. Following from the tempera-
ture field, the viscosity is low near the injection
but is significantly higher in the cooler parts.

Figure 11. Simulated temperature (top) and
viscosity (bottom) for wire fed additive

manufacturing. Solidified cells represented
with black grid.

CONCLUSIONS
A numerical framework to simulate various
types of dispensing of non-Newtonian fluids
has been presented. The framework supports a
wide range of applications with injection mod-
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els for different types of nozzles and a vari-
ety of rheology models with different levels of
complexity.

Three different example applications have
been demonstrated, covering both direct and
projected injection models as well as purely
viscous rheology models and time dependent
viscoelastic stress models. The wide range of
the applications included indicates that many
different applications could be simulated using
the proposed approach. Future work therefore
includes expanding the scope of the framework
by adding new injection and rheology models.
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