
 

ABSTRACT 
This study focuses on fv/fe modelling of 

shear-banded wormlike micellar fluids in 
complex flow using a revised BMP+_τp 
model. A modified planar Couette-flow is 
generated by a moving-top-plate over a 
rounded-corner 4:1:4 planar contraction-
expansion. Pure-shear Couette-flow is 
observed in fully-developed entry-exit 
regions, whilst mixed shear-extensional 
flow arises around the contraction-zone.  

 
INTRODUCTION 
The theme of this predictive modelling 
study is particularly concerned with 
investigating material systems, of worm-like 
micellar form, that are capable of supporting 
shear-banded flow response. Typically, 
under ideal shear-flow, but developing this 
further, to identify the corresponding 
position adopted under complex flow 
scenarios. There is sparsity of evidence in 
the literature for complex flow, in 
segregating such shear-banded material 
response. For this purpose, a revised 
BMP+_τp model is introduced to represent 
the response of wormlike micellar systems 
under shear-banding conditions. New and 
preferential features to this advanced 
BMP+_τp model-variant (Lopez-Aguilar et 
al1,2) are bounded extensional-viscosity 
response and an N1Shear-upturn at high 
deformation-rates. The majority of 
background work on this topic has been 
performed largely whilst focussing on 

steady simple-shear flow, and is commonly 
restricted to Couette-flow deformation (see 
Divoux et al.3). Experimental evidence 
would indicate that, extremely polymer-
concentrated micellar-fluids, with non-
monotonic shear-stress, are required to 
generate shear-banded solutions. As such, 
banded-system response is sought under 
solvent-fractions of β≤10-2 and material 
shear-banding intensity parameters of ζ≥3 
(with ζ=0, representing non-banding 
systems). 
 
GOVERNING EQUATIONS & 
THEORETICAL FRAMEWORK 

According to experiments (Divoux et al.3, 
García-Sandoval et al.4) and conventional 
simple-shear flow modelling, to promote 
exposure to shear-banding, a combination of 
factors are necessary. Firstly, a deformation-
rate that is dependent on the destruction 
coefficient; and secondly, extremely 
polymer-concentrated fluids, with solvent-
fractions on the order of β≤10-2. With the 
BMP-family of fluids and in the structure-
equation, non-monotonicity is introduced 
through an explicit rate-dependence on the 
structure destruction coefficient. Such 
dependency is expressed in Eq.(1), as a 
linear function of the destruction-
coefficient, whilst also calling upon the 
second-invariant on the rate-of-deformation 
tensor IID: 
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In this, a new temporal-scale arises, that of 
the shear-banding intensity parameter           

(ζ ϑ=
U
L

 in dimensionless form). This 

parameter then directly relates to flow-
segregation. At sufficiently high polymer 
concentrations and against deformation-rate 
increase, the shear-banding intensity 
parameter ζ  dictates - the appearance of 
maxima in the Trz-flow-curve, and the 
intensity of the shear-stress Trz-drop and 
subsequent rise. When ζ =0 (non-banding 
systems), a monotonic Trz-flow-curve is 
recovered. In addition, the dimensionless 
micellar coefficients account for structural-

construction (ω λ= s
U
L

, as a dimensionless 

time) and structural-destruction                     

( ( )
0

0 0
0ξ η η

η δ∞

= +
+G p s

k G  and 

( )0 0ξ η η= +p s
Uk
L

). Note, in Eq.1, the 

explicit presence of the group Weissenberg 
number ( 1λ=Wi U / L ), which determines 
elastic response. Hence, the structure-
equation (Eq.1) provides a dimensionless 

fluidity 0η

η
= p

p
f  with a coupled highly-

nonlinear relationship established amongst 
structure dynamics, viscoelasticity and 
energy-dissipation. Such a dimensionless 
fluidity f supplies information on both, the 
internal structure of the fluid, and modulates 
the polymeric-stress pτ -contribution; itself 
governed by: 
 

( )2 1 β
∇
= − −Dp pWi fτ τ .  (2) 

 

Here, the upper-convected derivative of 
polymeric-stress is,  
∇ ∂
= + ⋅∇ −∇ ⋅ ⋅∇
∂

u u up T
p p p pt

τ
τ τ τ − τ . 

Eq.(1-2) together deliver the internal forces 
within the polymeric-component of these 
wormlike micellar fluids. These then 
combine with a complementary Newtonian-
contribution, 2β= Dsτ , to generate the 
total extra-stress = +s pΤ τ τ . Here, 

( )0β η η η= +s p s/  represents a solvent-

fraction, where ηs  is the solvent-viscosity. 
The usual field equations apply for 
incompressible and isothermal flow, viz: 
 
 0∇⋅ =u ,    (3) 
 

Re - Re p
t
∂

=∇⋅ ⋅∇ −∇
∂

u T u u ,  (4) 

 
adopting a group Reynolds number, 

( )0ρ η η= +p sRe UL / , with material 
density, ρ  (here, Re~O(10-2). 

 
Discretisation: To extract numerical 
solutions under such severe and highly non-
linear flow conditions (recall β~10-2 and 
high Q-requirements), the ABS-f correction 
is demanded. This correction to the 
constitutive equation enhances numerical 
tractability, by enforcing consistent material 
property estimation. Continuity satisfaction 
is enforced discretely and a VGR-correction 
is also adopted (Lopez-Aguilar et al1,2).  
The numerical method employed is one of a 
hybrid finite element/volume scheme1,2. 
This scheme is a semi-implicit, time-
splitting, fractional three-staged 
formulation. It invokes finite element (fe) 
discretisation for velocity-pressure (Q2-Q1, 
parent-cell) discretisation and cell-vertex 
finite volume (fv, subcell) discretisation for 
stress. In this, the individual advantages and 
benefits of both (fe) and (fv) schemes are 
combined. The sub-cell fv-triangular-
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tessellation is constructed within the parent 
fe-grid by connecting the mid-side nodes. In 
such a structured tessellation, stress 
variables are located at vertices of fv-sub-
cells, offering linear interpolation whilst 
circumventing solution projection. The sub-
cell, cell-vertex fv-scheme is constructed 
about - fluctuation-distribution techniques 
for advection terms (upwinding), and 
median-dual-cell treatment for additional 
source terms (inhomogeneity)3,4. 
 
RESULTS & DISCUSSION 
 
The flow curve – steady simple shear flow 

Flow-curves for a segregating and a non-
segregating fluids are plotted in Fig. 1a. 
Here,  shear stress Trz against shear-rate data 
display two different behavioural responses: 
1) for a non-segregating fluid, with shear-
banding parameter ζ=0; and  2) for a 
segregating fluid, with ζ=3 (which provokes 
a maximum in the flow-curve). Such fluids 
have an extremely low solvent-fraction of 
β=10-2, as well as moderate-hardening 
extensional features {ω, ξG0, ξ, δ}={4, 
0.1136, 2.27x10-5

, 1x10-6}, see López-
Aguilar et al.3,4. 
 
Complex flow - Modified Couette flow 
A choice of three overall deformation-rates  
λ1!γ0  have been selected to explore 
segregating and non-segregating flow 
regimes, as in Fig. 1 flow-curve. Here, and 
via the drag exerted by the moving top-
plate, low (λ1!γ0 =0.5, Q=4), intermediate     

(λ1!γ0 =3.75, Q=30), and high (λ1!γ0 =56, 

Q=450) overall shear-rates !γ0  (=Uwall/L) are 
imposed. Flow profiles for these overall 
shear-rates are tested on two fluids: Fluid-I, 
incapable of supporting flow-segregation 
(with null shear-banding intensity 
parameter; ζ=0); and Fluid-II, prone to 
generate shear-banding (ζ=3).  This (ζ=3)-
Fluid-II may manifest shear-bands in an 
intermediate shear-rate interval of 

1≤ λ1!γ0 ≤10 . The stated combination, of 
three overall shear-rates and two fluids, 
provides six instances to compare and 
contrast (listed in Table 1). Here, attention is 
restricted to, contrasting case-E banded 
solutions (Fluid-II), against counterpart 
case-B non-banded (Fluid-I) instances; and 
also case-D, with the segregating Fluid-II in 
the non-banding flow-rate situation. 
 
Table 1. Deformation-rate versus fluid chart 

 λ1!γ =0.5 

Q=4 

λ1!γ =3.75 

Q=30 

λ1!γ =56.25 

Q=450 
ζ =0  
non-

segregating 
Fluid-I 

A 
Non-banded 

B 
Non-banded 

C 
Non-banded 

ζ =3 
segregating 

Fluid-II 

D 
Non-banded 

E 
Banded 

F 
Non-banded 

 
Banded against Non-banded solutions –
Intermediate flow rate (λ1!γ =3.75), E v B 
cases 

E-Banded velocity-ux field and profile First, 
the ζ=3-banded D-case is considered (Table 
1), for which the corresponding velocity ux-
field is presented in Fig. 2a. The nature of 
this complex planar flow, reveals  simple 
shear-flow away from the contraction, and a 
combined shear-extensional deformation in 
the contraction-region. In the upstream and 
downstream fully-developed flow-regions, 
one may appreciate a non-homogeneous 
steady-state velocity ux-field, with velocity-
bands exposed in the vertical y-spatial 
direction. Such a segregated flow pattern is 
then lost in the approach to the constriction. 
Subsequently, one notes that, after 
traversing through the constriction and upon 
recovering simple-shear deformation, a 
fully-developed flow pattern is recovered (as 
upstream).  

In Fig. 3a, flow-segregation is recorded 
through a split ux-profile. The interface 
between bands is located at the inflection-
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point of such a split ux-profile (yint~3.48 
units), where a sharp-change of colour-
intensity in the fields may be gathered (Fig. 
2). The location of this interface is 

determined at: yint =
!γ2 − !γ0
!γ2 − !γ1

α d , where !γ0  

(=3.8 units and Trz~0.4; Fig.1) is the overall 
shear-rate (here, in the unstable shear-stress 
regime). Then, at an equivalent shear-stress 
level,   !γ1 (=0.6 units) and   !γ2 (=25 units) are 
the low and high shear-rate stable-branches, 
respectively. In addition, αd=4 units, is the 
distance that separates the moving-plate and 
the contraction wall, corresponding to the 
contraction ratio (α) in this instance. Each 
velocity-band is supported by the 
corresponding low-  !γ1  and high-  !γ2  shear-
rates. The narrow band in the local 
neighbourhood of the moving-plate (Fig. 
2a), corresponds to the material in the high-

  !γ2  shear-rate band. In terms of rheological 
response (Fig. 1), this high-  !γ2  shear-rate 
band corresponds to a highly-unstructured 
fluid of total-viscosity ηTot~1.8x10-2 units. 
In contrast, the low-  !γ1  shear-rate band 
occupies the remaining channel space, lying 
between the band-interface and the bottom 
geometry-wall (Fig. 2a). Here, a highly-
structured fluid is reported, with viscosity 
ηTot~0.8 units. In the complex flow region, 
the pre-banded flow field is disrupted and 
distorted by the constriction, with 
unstructured material flowing through the 
constriction-gap, and highly-structured 
material occupying the stagnant corners (see 
the viscosity field representation, Fig. 2b). 
Then, beyond the constriction, and once the 
fluid-viscosity has had opportunity to 
readjust, a banded morphology is reformed. 

Shear and normal stress fields The fully-
developed banded velocity profile response 
of ζ=3-solution, is accompanied by a 
roughly constant shear-stress Trz-field (Fig. 
2c). Notably, at the channel-height where 

the interface between bands appears, a 
horizontal stripe of slightly larger Trz-values 
is apparent. The counterpart Trz-profile (Fig. 
3b) reveals a constant Trz-level (~0.4 units), 
that appears throughout the flow-gap. 
Nevertheless, precisely near the interface 
location, the Trz-profile oscillates; such 
undulation coincides with the slightly more 
intense stripes observed, and may be 
associated with the discontinuity posed by 
the interface. Conspicuously, the normal-
stress Txx also inherits bands, driven by the 
velocity profile (Fig. 2d). Once more, the 
homogeneous Trz-field and the 
inhomogeneous Txx-response in the fully-
developed regions, are disturbed by the 
presence of the constriction. Here, the 
effects of the combined shear-extensional 
deformation are more evident. On Trz, the 
stripped-interface disappears and a 
homogeneous Trz-level is adopted in the 
constriction-gap; moreover, in the recess-
zones, there are triangular structures, and a 
localised small zone emerges on the 
contraction back-face, near its tip. 
Consistently, on Txx, two regions are 
reported; with base on the contraction-tip, of 
negative values upstream, and a positive 
counterpart downstream. 

B-Non-banded Velocity field For case-B 
(non-segregating fluid (ζ=0): Table 1) and 
taken in contrast to case-E (ζ=3), the fully-
developed velocity ux-field now appears in 
single and continuous shear-rate form. This 
is accompanied by upstream/downstream 
constant Trz- and Txx-levels. Such a linear 
upstream velocity-profile is lost in the 
constriction zone, where the fluid is 
accelerated as a consequence of the 
converging flow. Here, given the highly-
nonlinear conditions based on polymer-
content (β=10-2) and increased flow-rate, the 
pressure-drop to drive the flow is enforced 
through a fixed pressure boundary condition 
at the inlet. This implies that the resulting 
pressure level must be calculated at the 
flow-outlet. Such a procedure ensures that 

J. E. López-Aguilar et al.

200



there is no downstream blockage created in 
pressure. Otherwise, this may arise to 
degrade the downstream solution quality in 
taking up fully-developed flow conditions.  
 
CONCLUSIONS 
In this study, novel solutions are reported on 
shear-banding flow of micellar systems in 
complex flow scenarios. Based on two 
micellar fluids with segregating and non-
segregating features, solutions display 
banded and non-banded structures away 
from the constriction, respectively. In the 
banded-case, such segregation is disrupted 
upon the approach to the contraction region 
in complex flow; and yet, is rebuilt, once the 
constriction has been traversed and the 
material returned to steady shear-flow. Such 
spontaneous segregation in the fully 
developed regions away from the 
contraction is supported by distinctly low 
and high deformation rates, which 
accordingly provide bands in velocity, 
normal stresses and viscosity (fluid 
structure). In contrast, non-segregating 
fluids display homogeneous fields at 
equivalent flow-rates. 
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Overall shear-rate 
γο=U/L=3.8 units 

Wi	(Q)=30	

Low-rate band 
γ1=0.6 units 

High-rate band 
γ2=25 units 

a) 

Overall shear-rate 
γ=U/L=3.8 units 

Low-rate band 
γ=0.6 units 

High-rate band 
γ=25 units 

b) 

Figure 1. a) Txy and b) viscosity; BMP+_τp MH; non-segregating ζ=0 and segregating ζ=3 
fluids 
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 Figure 2. a) ux, b) viscosity, c) Txy and d) Txx; BMP+_τp MH; Case E: {Q, ζ}={30, 3} 
 

a) ux 

b) Viscosity 

c) Txy 

d) Txx 

a
) 

b) 

Figure 3. a) ux and b) Txy profiles; BMP+_τp MH; Case E: {Q, ζ}={30, 3} 
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