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ABSTRACT
A new numerical method for simulation of vis-
coelastic fluid flow is proposed, based on a pre-
viously developed Lagrangian-Eulerian. The
viscoelastic constitutive equation is solved in
Lagrangian nodes with a backwards-tracking
procedure and the fluid momentum and con-
tinuity equations are discretized with the fi-
nite volume method on an adaptive octree grid.
Two-fluid flow is modeled with the Volume of
Fluid method.

The new method improves both the robust-
ness and computational efficiency in compari-
son to the original method. A validation is per-
formed for a viscoelastic planar Poiseuille flow,
as well as for simulation of industrial scale ad-
hesive application on an automotive part. The
results are in good agreement with available an-
alytic and experimental data. The results also
demonstrate the robustness of the numerical
framework for simulating complex, industrial
scale viscoelastic flows.

INTRODUCTION
Many industrial applications involve viscoelas-
tic fluid flow. Examples include additive manu-
facturing, polymer extrusion as well as differ-
ent hybrid joining operations with adhesives.
The latter has gained attention partly due to
an increased demand for lightweight products,
which may require new combinations of mate-
rials in for example automotive manufacturing.

Due to the complex nature of viscoelas-
tic flows, different numerical approaches have
been proposed over the years. Many exam-
ples of them use Eulerian discretization with

finite volumes8, 13, 14 or finite elements6, 16. In
addition, some type of stabilization method is
often used to avoid the numerical instabilities
commonly referred to as the High Weissenberg
Number Problem (HWNP)12. There exist both
simple approaches such as both-sides diffu-
sion (BSD) and more advanced methods as the
Log-Conformation Representation (LCR)15, 17

or the Square-Root Conformation Representa-
tion (SRCR)20.

An alternative approach is to solve the vis-
coelastic equations in the Lagrangian frame of
reference. A motivation for this is to avoid nu-
merical diffusion in the constitutive equation,
which typically does not involve a physical dif-
fusion term. One example is the Lagrangian
finite element method by Rasmussen and Has-
sager4, in which the entire flow history was
stored and re-meshing was required throughout
the simulation. Another is the split Lagrangian-
Eulerian method for viscoelastic Stokes flow by
Harlen et al.5 where the constitutive equation
was solved at the nodes of a co-deforming mesh
and the velocity and pressure fields were solved
with a Eulerian finite element method. Also in
their method, re-meshing was required as the
mesh became distorted. The Lagrangian Par-
ticle Method (LPM) was proposed by Halin et
al.7 in which the constitutive equation was inte-
grated along the trajectories of massless parti-
cles. Polynomial expressions were fitted to the
stresses and was included in a Eulerian finite
element method. A minimum of three parti-
cles per two-dimensional element was required
to fit the polynomial expressions. The method
was further developed to an adaptive version,
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denoted ALPM9, and to a backwards-tracking
version, denoted BLPM11, in which the parti-
cles were tracked backwards in time such that
their final location always was known a priori.

In previous research, a Lagrangian-Eulerian
method for viscoelastic fluid flow has been pro-
posed and validated,28 as well as evaluated in
terms of computational efficiency.29 In the
method, the viscoelastic constitutive equations
are solved in Lagrangian nodes which are con-
vected by the flow. The fluid momentum and
continuity equations are discretized with a Eu-
lerian finite volume method.

In this paper, the method is further devel-
oped to a backwards-tracking method, where
the solution of the constitutive equation is
partly inspired by the BLPM method of Wap-
perom et al.11 The new method increases the
robustness as well as reduces the computa-
tional cost of the Lagrangian-Eulerian method.
The method is implemented in the flow solver
IPS IBOFlow R�1, developed at the Fraunhofer-
Chalmers Centre in Gothenburg, Sweden. The
solver utilizes the mirroring immersed bound-
ary method18, 19 and an automatically gener-
ated and adaptively refined Cartesian octree
mesh. Prior to this work, the solver has been
employed for numerical simulation of conju-
gated heat transfer21, fluid-structure interac-
tion23 and of two-phase flows of shear-thinning
fluids such as seam sealing22, 26, adhesive appli-
cation24 and 3D-bioprinting27.

The paper is structured as follows. First
the numerical method is presented, and the dif-
ferences compared to the original method are
highlighted. A validation for a planar Poiseuille
flow is then presented, followed by a simulation
of industrial scale adhesive application onto an
automotive part for which the results are com-
pared to a 3D-scanned experimental adhesive
bead.

GOVERNING EQUATIONS
Viscoelastic flow is modeled by the incom-
pressible momentum and continuity equations,

r ∂u

∂ t
+ru ·—u =�—p+— · (2µS+t)+ f, (1)

— ·u = 0, (2)

where u is velocity, r density, p pressure, µ
solvent viscosity, i.e. the Newtonian contribu-
tion to viscosity, S the strain rate tensor, t the
viscoelastic stress tensor and f body force. The
strain rate tensor is the symmetric part of the
velocity gradient —u,

S =
1
2
�
—u+(—u)T� . (3)

The evolution of the viscoelastic stress is
described by a constitutive equation. In this
work the exponential form of the Phan Thien
Tanner (PTT) model2 is used, for which the
constitutive equation reads

l
5
t + exp

✓
el
h

Tr(t)
◆

t = 2hS, (4)

where l is relaxation time, h polymeric viscos-
ity, e a model parameter and Tr(t) the trace of
t , i.e. the sum of its normal components. The

entity
5
t is called the upper-convected deriva-

tive of t and reads
5
t =

Dt
Dt

� (—u)T · t � t ·—u, (5)

where Dt/Dt is the Lagrangian, or material,
time derivative of t .
Furthermore, a multimode approach is consid-
ered, such that the total viscoelastic stress is the
sum of stresses corresponding to the respective
N relaxation modes, as

t =
N

Â
k=1

tk. (6)

Each tensor tk is then described by an equation
of the form of Equation (4) with its own set of
parameters (lk,hk,ek).

Free-surface flow is modeled with the Vol-
ume of Fluid (VOF) method. The respective
fluid phases are locally represented by the vol-
ume fraction a 2 [0,1], described by the trans-
port equation

∂a
∂ t

+u ·—a = 0. (7)
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For a = 1 only phase 1 is present, for a = 0
only phase 2 is present and for a 2 (0,1) there
is a mixture, implying an interface between the
two phases. Local fluid properties f , e.g. as
density or viscosity, are defined as the average

f = af1 +(1�a)f2, (8)

where f1 and f2 are the properties the respec-
tive phases.

NUMERICAL METHOD
The numerical method presented in this work
is based on the Lagrangian-Eulerian framework
for viscoelastic flow proposed by Ingelsten et
al.28, 29 The momentum and continuity equa-
tions, as well as the transport equation for a ,
are discretized with a collocated finite volume
method on a Eulerian octree grid and solved
with the SIMPLEC method3. Equation (7) for
a is discretized with the shock-capturing CIC-
SAM scheme10, designed to avoid smearing the
interface between the fluid phases. All solution
variables are stored at the cell centers of the Eu-
lerian grid.

The octree grid is automatically generated
and adaptively refined throughout the simu-
lation. Boundary conditions from objects in
the domain are treated with the mirroring im-
mersed boundary method18, 19, in which the ve-
locity field is implicitly mirrored across the
boundary surface such that the given bound-
ary condition is satisfied for the converged so-
lution. No boundary-conforming mesh is re-
quired and arbitrary moving objects are han-
dled with minimal manual user input.

The viscoelastic constitutive equation is
solved in Lagrangian nodes, convected by the
flow. For each Lagrangian node, Equation (4)
is formulated in terms of the ordinary differen-
tial equation (ODE) systems

ẋ = u, (9)

ṫ = Gk(tk,—u), k = 1, . . . ,N, (10)

where ˙(•) denotes time derivative and the right
hand sides G1, . . . ,GN follow directly from
Equation (4) and (5).

The coupled ODE systems (9) and (10) are
solved from time t to t +Dt with a backwards-
tracking procedure. At each node of the Eu-
lerian fluid grid, one Lagrangian node is cre-
ated. This is assumed to be the final location
of the Lagrangian node, i.e. x|t+Dt . The initial
location x|t , is calculated by integrating Equa-
tion (9) backwards in time. The corresponding
stress t t is then interpolated to the node at x|t
and the system (10) is solved forward in time
until t|t+Dt is obtained. When required, the
fields u and —u are interpolated from the Eule-
rian grid to the Lagrangian node. The solution
procedure is visualized in Figure 1.

x|t+Dt

x|t

t|t+Dt

t|t

Figure 1. Backwards-tracking Lagrangian
node position (left) and calculating

viscoelastic stress (right).
When the stresses at time t +Dt have been

obtained, the values at the Eulerian cell cen-
ters are calculated from the values at the grid
nodes. The viscoelastic contribution to the dis-
cretized momentum equation is then added as
an explicit pseudo-force.

In the original Lagrangian-Eulerian
method28, Lagrangian nodes were initial-
ized with a given distribution density, typically
on the order of 4 nodes per cell, at the begin-
ning of the simulation and the systems (9) and
(10) were solved simultaneously. Unstructured
interpolation using radial functions (RBF) was
used to interpolate the viscoelastic stress to the
Eulerian cell centers and nodes were added or
deleted when required to maintain the quality
of the node set, based on certain criteria.

In the new method, the need for unstruc-
tured interpolation as well as for adding or
deleting nodes is eliminated. Furthermore, the
total number of nodes is decreased. Hence, the
method is more robust and the computational
cost is reduced. As a reference, it was shown
for the original Lagrangian-Eulerian method
that approximately 30% of the stress calcula-
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Figure 2. Schematic of the planar Poiseuille
flow

tion time was spent on the unstructured inter-
polation and around 10% on the redistribution
of Lagrangian nodes29. A detailed study of the
computational efficiency is however outside the
scope of this paper.

RESULTS
A planar Poiseuille flow is simulated with the
proposed method. The flow geometry consists
of a channel with height 2H and length H. Flow
is initiated from rest by imposing a constant
pressure drop Dp across the channel and peri-
odic conditions are used for velocity and vis-
coelastic stress at the inlet and the outlet. At
the upper wall the no-slip condition imposed
and at the lower boundary a symmetry condi-
tion is used. Hence, half the channel is effec-
tively simulated. A sketch of the geometry is
shown in Figure 2.

The viscoelastic fluid is modeled as
a single-mode Upper-Convected Maxwell
(UCM) model, which is obtained by letting
e = 0 in Equation (4) and by using solvent
viscosity µ = 0 in the momentum equation.
The Weissenberg number for the flow is de-
fined as Wi = Ul/H, where U is the mean
steady velocity. The flow is simulated for
Wi = 0.1,1,10 with five uniform grids with
spacing Dx such that H/Dx = 5,10,20,40,80.

The transient flow is simulated until steady
state is reached. To achieve this in shorter
calculation time and to improve numerical
stability given the limiting case of µ = 0,
both sides diffusion with artificial viscosity
µa = 102,103,104 Pa · s, respectively for Wi =
0.1,1,10, is used. It is remarked that this is
feasible since only the steady solution is sub-
ject to analysis. The time steps used satisfy

Dt/l = 10�4.
To validate the solution, the errors com-

pared to the analytic solution are calculated as

Ef =
||fsimulation �fanalytic||

||fanalytic||
, (11)

where || • || denotes the L2 norm taken over the
cells of the Eulerian grid and f is either ve-
locity or stress. The calculated errors for the
streamwise velocity and the viscoelastic nor-
mal stress are shown in Figure 3. By cal-
culating the slopes of the errors in log-space,
it is found that the quantities converge to the
analytic solution with second order accuracy,
which is in agreement with previous work28, 29.

Figure 3. Computed errors compared to
analytic solution for planar Poiseuille flow for
velocity (top) and viscoelastic normal stress

(bottom)
An industrial case of robot-carried appli-

cation of a viscoelastic rubber adhesive on an
automotive part is simulated. The circular
nozzle has diameter 2mm and moves along
a predefined path. The adhesive flow rate is
0.736ml/s. An overview of the geometry and
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the application path is shown in Figure 4. Fur-
thermore, a 3D-scanned experimental adhesive
bead for the case is available for comparison.

Figure 4. Overview of geometry and
application path (black curve) moving from

left to right in figure.
The adhesive is modeled with a six-mode

PTT model fitted to available experimental data
from small amplitude oscillatory shear (SAOS)
experiments. The measurements were per-
formed at RISE IVF in Mölndal, Sweden. As-
suming small strain, the analytic expressions
for the storage modulus G0 and the loss mod-
ulus G00 read

G0(w) =
N

Â
k=1

hklkw2

1+l 2
k w2 , (12)

G00(w) =
N

Â
k=1

hkw2

1+l 2
k w2 , (13)

where w is the angular oscillation frequency.
The parameters lk,hk,k = 1, . . . ,6 are fitted us-
ing the GUSTL method by Kraus and Nieder-
wald25. The results are shown in Figure 5 and
the parameters are listed in Table 1. Measure-
ment points at w > 102 have been excluded
from the parameter fit to avoid influence of pos-
sible measurement artefacts at high frequen-
cies. It is remarked that the wide range of re-
laxation times as well as the large polymeric
viscosities puts high demand on the simulation
framework in terms of numerical stability.

The value of ek is chosen to be 0.5 for all
modes, which was found to give satisfying re-
sults. Furthermore, the solvent viscosity µ =
60Pa · s is used, estimated as the infinite shear

Figure 5. Viscoelastic modulii measured with
SAOS (markers) and calculated with fitted

model (solid lines).
k lk [s] hk [Pas]
1 1000.0 1.50 ·106

2 33.1 3.16 ·104

3 5.06 6246
4 0.772 1202
5 0.149 317
6 0.0160 121

Table 1. Viscoelastic parameters for the PTT
model used for the adhesive.

viscosity µ• in the Carreau model, and the den-
sity of the adhesive is 2000 kg/m3.

The case features two-fluid flow of the ap-
plied adhesive and the surrounding air. Con-
tinuous inflow of adhesive into the domain is
described by an injection model. In short, the
grid is first refined around the nozzle. Injection
cells are then identified and are filled with ad-
hesive by modifying the local volume fraction
a . The inlet velocity based on the volume flow
rate is enforced through an immersed boundary
condition.

Simulations are carried out for two grid res-
olutions. In both cases the coarsest cells consist
of cubes with the side Dx = 10mm. The grid is
refined near the adhesive bead by recursively
splitting the cells into eight smaller cells. The
smallest cell sizes are Dxmin = 0.625mm and
Dxmin = 0.3125mm, respectively for the two
simulations. The coarser simulation is carried
out with a global time step Dt = 5 · 10�5 s and
the finer simulation with Dt = 1 ·10�5 s.

In Figure 6 a snapshot from the finer sim-
ulation is shown. The adhesive is visualized
by the isosurface a = 0.5, the injection cells as
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solid cubes and the Lagrangian nodes are col-
ored by the viscoelastic stress component tzz,
where the injection is approximately in the z-
direction.

Figure 6. Snapshot of adhesive simulation.

In Figure 7 the simulated beads from the
two simulations are compared to the 3D-
scanned bead. The geometries of the simu-
lated beads have been translated to enable the
comparison. It is remarked that there may ex-
ist minor differences in the robot paths in the
experiments and the simulation, particularly
where the robot has to slow down due to re-
orientations. However, good overall agreement
is found for both simulations. The scanned
bead shows tendencies of fluid buckling, result-
ing in uneven features in the bead. This phe-
nomenon may be difficult to predict through
simulation. However, the fine simulation qual-
itatively predicts some degree of buckling.

A more detailed comparison between the
simulations and the 3D-scan is made in the
cross section in a part of the bead which is less
affected by possible differences in the robot
path. The location of the cross section is shown
in Figure 8 and the comparison is shown in Fig-
ure 9. There are clear differences between the
simulations and the scanned bead around the
edges of the bead. However, these may be at-
tributed to shadows in the scan. Considering
this, the bead from the fine simulation is in ex-
cellent agreement with the scanned bead. The
coarse one shows some discrepancies, but is in
qualitative agreement with regards to the cross

Figure 7. Comparison of simulated beads
(dark gray) with Dxmin = 0.625mm (left) and
Dxmin = 0.3125mm (right) and scanned bead

(light gray).

section geometry.

Figure 8. Cross section used for detailed
comparison.

CONCLUSIONS
A numerical method for simulation of vis-
coelastic free-surface flow has been proposed.
The new method is based on a previously devel-
oped Lagrangian-Eulerian framework for vis-
coelastic flow. The viscoelastic constitutive
equation is solved in the Lagrangian frame
of reference with a backwards-tracking proce-
dure, while the remaining transport equations
are solved with a Eulerian finite volume dis-
cretization. The discretization is performed
on an automatic and adaptive octree grid and
boundary conditions in the domain are treated
using implicit immersed boundary conditions.

The new method improves the robustness
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Figure 9. Detailed comparison of simulation
with Dxmin = 0.625mm (2), 0.3125mm (⇥) to

3D-scanned bead (�).

and computational efficiency compared to the
original Lagrangian-Eulerian method. The ac-
curacy of the method was validated for a vis-
coelastic planar Poiseuille flow as well as for
an industrial scale case of adhesive application
onto an automotive part. The results demon-
strated that the proposed method produces re-
sults which are in good agreement with avail-
able analytic and experimental data. Further-
more, no additional stabilization technique was
used for the adhesive simulation. Thus, given
the large degree of elasticity of the adhesive,
the simulations have shown that the proposed
method is numerically robust.
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