
 

ABSTRACT 
This study provides a new approach for 

deriving analytical and numerical solutions 
for finitely extensible nonlinear elastic 
fluids using the Peterlin closure (FENE-P) 
viscoelastic fluid flows in a 2D channel and 
a 3D pipe in a fully developed condition. 
The validity of the present approach has 
been confirmed by the analytical solution 
proposed originally by Cruz et al. (Cruz et 
al., JNNFM, 132 (2005) 28–35).  The 
numerical simulation of the FENE-P fluid in 
a slit flow and a tube flow has been carried 
out using both the spectral/hp element 
method and the third-order Adams-
Bashforth method for the spatial and time 
discretization respectively. A velocity 
correction splitting scheme method has been 
applied for the pressure-velocity decoupling 
algorithms. The effects of the dimensionless 
parameter characterizing the viscoelasticity, 
the Weissenberg number, and the finite 
extensible parameter are investigated on 
polymeric normal stress,  shear stresses and 
the velocity profile. Regarding the shear 
thinning characteristic of the FENE-P 
model, the velocity profile becomes flatter 
as Weissenberg number increases.  

 
INTRODUCTION 

Nowadays one of the challenges for 
rheologists is to find and develop analytical 
and numerical solutions for viscoelastic 
flow problems. Many analytical and 

numerical attempts have been made to solve 
these problems  

For many generalized Newtonian fluids, 
there are analytical solutions derived and 
compiled by Bird et al.1. For some 
differential viscoelastic models such as the 
Giesekus and Johnson-Segelmant models, 
some proposed solutions are available from 
other researchers; a non-exhaustive list of 
those research works are2,3,4,5. Recently, 
Cruz et al.6 have presented analytical 
solutions for fully developed pipe and 
channel flows of two viscoelastic fluids 
including a Newtonian solvent;  polymer’s 
contribution is described by Phan Thien 
Tanner and FENE-P models. 

In addition to the analytical solutions for 
viscoelastic fluid flows, there are a lot of 
approximate solutions that use different 
numerical methods. Here, we suffice to say 
that those research works have used high 
order numerical methods, specifically 
spectral element methods (SEMs). Gervang 
et al.7 study the viscoelastic flow past a 
sphere by spectral methods. Fiétier et al.8 
present time-dependent algorithms to 
develop spectral element methods to 
simulate unsteady flows of viscoelastic 
fluids using a closed form of a differential 
constitutive equation on a straight channel 
and a 4-1 contraction by UCM and FENE-P 
models. Fiétier et al.9 analyze linear stability 
on time-dependent with SEM by alternating 
different parameters, factors and boundaries. 
Phillips et al.10 employ SEM to simulate 
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viscoelastic flows using Brownian 
configuration fields; comparisons are made 
between simulations based on both the 
Oldroyd-B constitutive model and those 
based on Brownian configuration fields 
using Hookean dumbbell models. Jafari et 
al.11 propose a new extended matrix 
logarithm formulation in order to remove 
instabilities observed in the simulation of 
unsteady viscoelastic fluid flows (FENE-P 
model) in the framework of the spectral 
element method on a 2D channel geometry. 
Kynch et al.12 present a high-resolution 
spectral element approximation of 
viscoelastic flows (Oldroyd-B and FENE-P) 
in asymmetric geometries (flows past a 
fixed sphere) using a DEVSS-G/DG 
formulation. 

This article is divided into two main 
parts. In the first part, we introduce a new 
semi-analytical solution for the FENE-P 
model in a channel and pipe flows in the 
fully developed condition. In the second 
part, a numerical solution in the context of 
SEMs is developed and discussed making a 
comparison between the proposed analytical 
solution and the approximate solution of 
SEM.  
 
GOVERNING EQUATIONS 

Figure 1 a and b, below, presents a 
schematic of the 2D channel and the 3D 
pipe showing the geometries of this study: 

 
Fig. 1 a. Schematic of the 2D channel 

 
Fig. 1 b. Schematic of the 3D pipe 

As in Newtonian flows, the viscoelastic 
flows are governed by mass and momentum 
equations. The only difference is that, the 
momentum equation is modified with 
respect to the polymeric stresses. For 
incompressible fluids with constant 
viscosity, the continuity and momentum 
equations with respect to viscoelastic fluids 
can be written as equations (1) and (2) 
below: 

  
∇. # = 0, 
and, 

(1) 

'#
'(

= −
1
+
∇, + ./∇0# + .1∇. 23, 

 
(2) 

where #, 23 and , are the velocity and 
pressure fields, respectively. ./, .4 and + 
show the solvent viscosity, the polymeric 
viscosity and the density of the fluid, 
respectively; and 5#

51
  is the material 

derivative function and can be written as: 
'#
'(

=
6#
6(
+ #.∇# (3) 

As we have seen in equation (2), the 
polymeric stresses are added as a source 
term to the momentum equation in the form 
of ∇. 74. To obtain the polymeric stresses, a 
constitutive equation with regards to the 
viscoelastic model must be calculated. In 
this study, we work specifically on FENE-P 
fluids and the mathematical equation of this 
non-linear dumbbell model will be 
introduced later. 
In order to reduce the parameters that 
govern our study and decrease the 
calculation space, and considering repetitive 
parameters such as specific velocity, 8, the 
height of the channel or diameter of the 
pipe, ', the density of the fluid, +, and the 
viscosity of the solvent ./, we are able to 
introduce the following dimensionless 
variables:  
9:
∗ =

9:
'
				 , =:

∗ =
=:
'
	, (∗ = (

8
'

 

>∗ =
>
8
		, ?∗ =

?
8
		 , @∗ =

@
+80

 

7,:A
∗ =

7,:A
./8

		 , B:A
∗ =

B:A
./8

 

(4) 

S. Pashazadeh and A. Jafari

186



 
All variables with “*” are in the 

dimensionless form. For simplicity from 
now on we omit “*”, as all of the variables 
are converted to the dimensionless form. 
The dimensionless form of the continuity 
and momentum equations are as follows: 
∇.# = 0, and (5) 

'#
'(

= −
1
CD
∇, +

CE
CD
∇0#+

1 − CE
CD

∇.
23
FG

 (6) 

where CD, is the Reynolds number and is 
equal to the ratio of the inertia forces on the 
viscous forces. CE is the ratio of the solvent 
viscosity to the total viscosity and is equal to 
HI
HJ

 where .1 = ./ + .4	. Finally, FG is the 

Weissenberg number and is equal to KL
5

 and 
M is the characteristic relaxation time of the 
viscoelastic fluids. 
it is worth mentioning that for a semi-
analytical solution to the pipe flow, we use 
the cylindrical coordinate, and for the full 
numerical solution we use the Cartesian 
coordinate. In the cylindrical coordinate the 
velocity field is equal to # = (OP	, OQ	, OR), 
where OP , OQ , and OR represents the 
component of the velocity in the T, U, V 
direction and in the Cartesian coordinate, the 
velocity is equal to  # = (OW, OX, OR)	 and OW , 
OX  and OR are the velocity components in the 
direction of 9	, =	, YZ[		V respectively. For 
the 2D channel, we use the Cartesian 
coordinate for both the semi-analytical and 
the full numerical solution, and the velocity 
vector is defined as #=(OW, OX) where OW  
and	OX  are velocity components in the 
directions of 9	, =, respectively. The 
polymeric stresses for the FENE-P fluid are 
governed by equation (7),   
23 =

\

]^
J_	(\)
`a

− b , (7) 

where c is the finite extensibility 
parameters; c = 8 for this study. \ is the 
conformation tensor and is calculated from 
the partial differential equation below: 
e\

ef
+ (#. ∇)\ − (∇#)g. \ − \. (∇#) = −

23

h:
. (8) 

 

3D SEMI-ANALYTICAL SOLUTION  
To simplify the problem, we assume a 

fully developed and steady state condition; 
also, we consider that the velocity in the 
directions of  T and U	is equal to 0 (OP =
OQ = 0). So, from the continuity equation 
(5), we have : 
∇.# =

ij_
iP
+

]

P

ijk
iQ

+
ijl
iR
= 0 ⇒	

ijl
iR
= 0. (9) 

In order to solve the FENE-P equation (8), 
we first introduce ∇#	, \	, 23 in the 
cylindrical coordinate, as follows: 
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(10) 

\ = v
BPP BPQ BPR
BPQ BQQ BQR
BPR BQR BRR

w, and 
 

(11) 

23 = v
7PP 7PQ 7PR
7PQ 7QQ 7QR
7PR 7QR 7RR

w. 
 

(12) 

by introducing the above equations (10) to 
(12), in equation (8), we get: 
TT:		7PP = 0,	TU:		7PQ = 0, (13) 

TV:		
y_l
h:
= BPP

ijl
iP

 , UU:		7QQ = 0,  

UV:		
ykl
h:
= BPQ

ijl
iP

 , 	VV:		 yll
h:
= 2BPR

ijl
iP

.  

Extending equation (7) and combining it 
with equation (13) produces the following: 
TT:		

{__

]^
J_(\)
`a

− 1 = 0			 ⇒		BPP = 1 −
1P(\)

|a
, (14) 

TU:		
{_k
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J_(\)
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, (17) 
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{kl

]^
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(]})
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(18) 

VV:		
{ll
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Next, by extending equation (6), we have:
T:		

i4

iP
= 0,	U:			 i4

iQ
= 0,  
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1
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CE
CD
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ÉÑ +
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.
1
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+
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CE
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1
T
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6T

+
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6T0

Ü +
1 − CE
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.
1
FG

Å
6
6T
ÇFGBPP

6OR
6T
É +FG

BPP
T
6OR
6T
Ñ. 

(20) 

 
In the equation above, due to couplings and 
the non-linearity of the equation, it is not 
easy to find a full analytical solution. One of 
the most accessible ways to reach an 
analytical solution is by using numerical 
methods. We use a finite difference with 
first order backward discreet domain into 
1,000 parts, and explicitly by the boundary 
of  no-slip condition on(r=R);therefore, we 
can find a solution for the OR, \ terms and  
subsequently find 23 by equation (13) 
relations.  
 
2D SEMI-ANALYTICAL SOLUTIONS 

For 2D geometry, in the Cartesian 
coordinate and assuming that  OX = 0, the 
continuity equation will be simplified to: 
∇. O =

ijá
iW
+

ijà
iX

=
ijá
iW

= 0, (21) 

and the gradient of the velocity field, the 
conformation tensor, and the polymeric 
stresses in the 2D Cartesian coordinate can 
be written as:  
 

∇# =

⎣
⎢
⎢
⎢
⎡
6OW
69

6OW
6=

6OX
69

6OX
6= ⎦
⎥
⎥
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0 0
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(22) 

\ = Å
BWW BWX
BWX BXX

Ñ, and 
(23) 

23 = â
7WW 7WX
7WX 7XX

ä. (24) 

 
Introducing equations. (22) to (24) into 
equation (8) produces: 

7WW = 2FGBWX
6OW
6=
	, 

(25) 

7WX = FGBXX
6OW
6=

	, and 
(26) 

7XX = 0. (27) 

 

From equation (6) we get : 
i4

iW
=

éè
éê

iajá
iXa

+
]^éè
éêh:

iyáà
iX

 , and (28) 

i4

iX
= 0. (29) 

by integrating equation (28) in the y-
direction and implementing the boundary 
condition in the center of the channel 
ë
ijá
iX
= 7WX = 0, Y(:	= =

5

0
		í , we have: 

6OW
6=

= −
1 − CE
CEFG

7WX +
CD
6,
69
CE

= −
CD
6,
69

CE

'
2
. 

(30) 

Then, by combining equations (26) and (30), 
we reach the relationship as follows: 
6OW
6=

=
CE

CE + BXX − CEBXX
ì
CD
6,
69
CE

= −
CD
6,
69

2CE
'î. 

(31) 

By coupling equation (7) with equations 
(27), (26) and (25) respectively we have: 
BXX = 1 −

1P(ï)

|a
=

|a^{áá
]ñ|a

, (32) 

{áà

]^
J_(ó)
`a

= FGBXX
ijá
iX

, and (33) 

{áá

]^
J_(ó)
`a

− 1 = 2FGBWX
ijá
iX

. (34) 

Finally, by solving the system of equations 
(31) to (34), it is possible to find a solution 
for ijá

iX
 and subsequently for		7WW	, 7WX. In 

order to find the velocity, we integrate 
equation (30) in the direction of =, as 
follows:  

OW = −
]^éè
éèh:

∫ 7WX[= +
éê

ôö
ôá

0éè
=0 −

éê
ôö
ôá

éè

5

0
=. 

(35) 

 
SPECTRAL ELEMENT METHOD 

Spectral methods are estimated by high 
order polynomials approximation (usually 
according to Chebyshev). We usually use 
this method in simple geometries as it is not 
easy to manipulate in complex geometry, 
except by using the decomposition method; 
that finally leads to some of the complicated 
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equations taught. Spectral element methods, 
or SEM, is a mixture of finite element 
method capability in complex geometries 
with high order polynomials, precise 
approximation of spectral methods. The 
difficulty of implementing SEM is balanced 
by its great and fascinating capability to 
reach solutions in the areas that have high 
gradient and lower dissipation and distortion 
compared to other numerical methods. This 
method had been used in [13-15]. The 
spectral/hp element method includes 
refinement with two techniques, “p” and 
“h”;   “p” refers to the number of elements, 
and “h” refers to the polynomials degree in 
approximations. By increasing the number 
of elements and degrees we are able increase 
develop the accuracy of solutions. The  
domain in the 2D channel was divided into 
20 equal elements, and the 3D cylinder was 
also divided into 20 elements. The discrete 
geometries are shown in Figure 2, below.  

 

 
a) Spectral element of a 2D channel 

                                                              
b) Spectral element of a 3D pipe 

Fig. 2. Discrete geometries  

Each dependent parameter, such as the 
pressure, tension and velocity on the 
standard element through the expansion of 
tonsorial basis, is approximated as follows: 

for 2D channel we have:  

ψ(õ], õ0) ≈ ù

û

4ü†

ù°4

û

¢ü†

(õ])°¢(õ0)£§4¢ 

 

(36) 

, and for 3D pipe we have: 

ψ(õ], õ0, õ}) ≈ù

û

4ü†

ù

û

¢ü†

ù°4

û

/ü†

(õ])°¢(õ0)°/(õ})£§4¢/ 

 

(37) 

where ψ is the general dependent term; £§4¢/  
,	£§4¢  are the expansion coefficients; õ: are 
the local spatial alternatives that are put in      
-1, +1; • is the degree of basis; and finally,  
°4, °¢,°/	 are modal functions that could be 
calculated as follows: 

°A =

⎩
⎪
⎨

⎪
⎧

(]^™)

0
(]^™)

0

(]ñ™)

0 Á^]
],] (¨)

(]ñ™)

0

								≠ÆT	

Ø = 0

0 < Ø < •

Ø > •

, 

 
 
(38) 

 
where Á^]

],]  is a Jacobi function [16]. Also to 
discretize the time aspect of the problem in, 
we use the 3rd order of Adams Bashforth 
method; for more information please refer to 
[17]. 
The numerical study in both the 2D and 3D 
test cases was carried out using [( = 10D − 05 
and the polynomial degree of the modal 
basis in all space directions was set to • =
5. 
 
 
BOUNDARY CONDITIONS  
 
 
For the 2D channel: 

 Inlet Outlet Walls 

Polymeric 
Tensions 

Dirichlet : 
(our semi-analytical 

solution) 

Neumann: 
(fully developed) 

Dirichlet: 
(our semi-analytical 

solution) 

Velocity 
Dirichlet : 

(our semi-analytical 
solution) 

Neumann: 
(fully developed) 

Dirichlet: 
(no-slip condition) 

Pressure Neumann: 
(fixed gradient) 

Dirichlet: 
(zero pressure) 

Neumann : 
(zero) 
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For the 3D pipe, we used the same boundary 
condition; however, for the pressure on the 
walls and outlet we used high order 
boundary condition. For more information 
please refer to [18].  
 
RESULTS 

All the parameters set in our study are 
equal to: 
CD = 1	, c = 8	, ' = 1	, CZ =

1
9
		 (39) 

6,
69

= −0.11(≠ÆT	2')		,
6,
6V

= −0.11(≠ÆT	3')  

To validate our analytical solutions, we 
compared our results with the analytical 
result proposed by Cruz et al. [6] in both 
geometries. Figure 3, below, shows the 
polymeric normal and shear stresses and the 
velocity profile at FG = 5 for the 2D 
channel at the outlet’s cross-section.  

 
a) 

 
b) 

 
c) 

Fig. 3. 2D validation at the exit of the channel. a) 
Normal stress b) Shear stress c) Stream-wise velocity 

 
As can be seen in Fig3, the present semi-
analytical solution and the numerical 
solution have very good agreement with the 
analytical solution of Cruz et al.6. The 
polymeric normal and shear stresses with 
stream-wise velocity and pressure along the 
channel at FG = 5 are shown in Figure 4.  

 
a) Polymeric normal stress 

 
b) Polymeric shear stress 

 
c) Stream-wise velocity 

 
d) Pressure 

Fig. 4.  Numerical solution of FENE-P fluids at FG = 5 in 
the channel flow. a)  Polymeric normal stress, b) Polymeric 

shear stress, c) Stream-wise velocity, d) Pressure. 
 
Figure 5, represents the comparison of the 
present analytical and numerical solution 
with the analytical solution proposed by 
Cruz et al. [6] in the 3D pipe. Similar to the 
2D geometry, a very good agreement for all 
variables, polymeric normal stress,  shear 
stresses, and stream-wise velocity can be 
seen see in Figure 5.  
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a) 

 
b) 

 
c) 

 
d) 

Fig. 5. Validation of the pipe flow. a) Normal stress. b) 
Shear stress in x-direction. c)Shear stress in y-direction. 

d)Axial velocity 
 

The numerical results of the contours of the 
polymeric stresses, velocity, and pressure 
are shown in Figure 6, below.  
 

 
 

a) Polymeric normal stress 

 
 

b) Polymeric shear stress in the x-direction 
 

 
c) Polymeric shear stress in the y-direction 

 

 
d) Stream-wise velocity 
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e)Pressure 

 

Fig. 6. Numerical solution of FENE-P fluids at FG =
5 in the pipe  flow. a)  Polymeric normal stress, b) 

Polymeric shear stress in the x-direction, c) 
Polymeric shear stress in the y-direction, d) Stream-

wise velocity e) Pressure 
CONCLUSION 

In this paper, we propose a new 
methodology to obtain a semi-analytical 
solution for the FENE-P fluids in a 2D 
channel and a 3D pipe flow. As part of the 
analytical solution, we simulated the 2D and 
3D flows using spectral element methods. 
The validations of the present analytical and 
numerical solutions were carried out by 
making comparisons with the analytical 
solution originally proposed by Cruz et al. 
[6]. Both the numerical and analytical 
results show very good agreement with the 
analytical result of Cruz et al. for both the 
2D and 3D fluid flows. 
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