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ABSTRACT 
We describe a new approach to 

understanding the progressive transition 
from linear to nonlinear rheological 
response in complex fluids and soft solids. 
Large amplitude oscillatory shear (LAOS) 
tests are carried out over a wide range of 
frequencies and strain amplitudes. The 
resulting material response to an oscillatory 
input can be represented in terms of 
Lissajous figures and can also be 
decomposed into purely viscous and purely 
elastic contributions. By plotting these 
contributions in the form of Pipkin diagrams 
a unique rheological fingerprint of a 
complex fluid can be constructed.  

 
INTRODUCTION 

Nonlinear rheological properties are 
often relevant in understanding the response 
of a material to its intended environment.  
For example, many gastropods crawl on a 
thin layer of pedal mucus using a technique 
called adhesive locomotion, in which the gel 
structure is periodically ruptured and 
reformed. The thin layer (typically 10-20 
µm) of excreted mucus serves both as glue 
and lubricant allowing the animals to climb 
walls and crawl across ceilings as shown in 
Figure 1. Gastropods exert shear stresses on 
this thin layer of structurally-sensitive 
mucus that holds the organism to the 
substrate. Compression waves move toward 
the head (top of picture) during locomotion. 
Muscular contractions (see label ‘a’ below) 
compress the foot parallel to the substrate, 
creating an area of high shear stress which 

ruptures the mucus network structure; an 
interwave of low stress (label ‘b’) allows the 
network structure to periodically reform into 
a solid-like material which glues the 
organism to the substrate1.  
 

 

Figure 1 (a) Side view of common 
garden snails (Helix aspera); (b) Bottom 
view of a crawling terrestrial slug (Limax 

maximus), 1 cm scale bar; 
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The thin pedal mucus film has an 
effective yield stress; at high applied 
stresses the network structure breaks, 
enabling the foot to glide forward over a 
fluid layer; whereas in regions of low 
applied stress the network structure reforms 
into a solid-like layer connecting the foot to 
the substrate1.  

The question arises of how best to probe 
the complex rheological response of such 
soft materials. The flow is neither a steady 
shearing flow nor a linear viscoelastic 
deformation with small strain amplitudes. 
Large amplitude oscillatory shear (LAOS)2 
provides a systematic framework to measure 
and quantify the progressive transition from 
linear to nonlinear rheological behaviour of 
such biological gels and we consider this 
deformation protocol in detail below.  

 
LARGE AMPLITUDE OSCILLATORY 
SHEAR FLOW (LAOS) 

For many complex materials the 
common practice of reporting just the 
“linear viscoelastic moduli” as calculated by 
commercial rheometers (or more accurately, 
the first harmonic coefficients 

′G (ω ), ′′G (ω ){ } in a Fourier series) is 
insufficient and/or misleading for describing 
the nonlinear material response under 
deformation conditions characteristic of the 
actual process of interest. As an example, 
we show in Fig. 2 a stress sweep to probe 
the linear viscoelastic response of a mucin 
gel excreted by a crawling slug at a fixed 
frequency of ω  = 0.5 rad/s. 
The material response is clearly that of a 
soft elastic solid with the magnitude 
of ′G > ′′G . A weak degree of strain 
softening is observed as the stress amplitude 
is increased; however the response is 
otherwise unremarkable until the material 
suddenly ruptures and fails at a critical 
stress of ~ 600 Pa. Similar responses can be 
measured at different frequencies and the 
material exhibits the characteristic 
elastically-dominated frequency response of 
a soft gel [1],[3].  

 
Figure 2: stress amplitude sweep showing 

the variation of the linear viscoelastic 
moduli of a pedal mucus film as the 

oscillatory stress amplitude is increased. 
 

A closer examination of the individual 
raw waveforms however shows that the 
material response is actually very rich. A 
convenient way of representing this 
information is in the form of Lissajous 
figures2 in which the time varying stress 
σ (t)  is plotted as a function of the 
oscillating strain γ (t) = γ 0 sinωt , or as a 
function of the instantaneous shear rate 
&γ (t) = γ 0ω cosωt . A representative plot for 

the gastropod mucin film is shown in Figure 
3: 

 
Figure 3. Lissajous figures of the oscillatory 

stress in a gastropod mucin film as a 
function of increasing strain amplitude at a 

fixed frequency of ω  = 0.5 rad/s. 
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At small strains (see inset) the response 
is linearly viscoelastic and the trajectories 
are elliptical which can be analyzed to 
extract values of ′G  & ′′G  respectively. A 
perfectly elastic material response would 
appear as a straight line in Fig. 3, and 
conversely a purely viscous fluid response 
would correspond (when appropriately 
scaled) to a circular trajectory. However as 
the strain amplitude increases this 
rheological test highlights two 
distinguishing features of such soft 
viscoelastic gels: firstly, a gradual softening 
with increasing strain-amplitude indicated 
by the clockwise rotation of curves; and 
secondly, a distortion from elliptical shape 
indicative of strain-stiffening at large 
strains.  Nonlinear responses have been 
documented in a large number of other soft 
solids and biopolymer gels3,4.  The question 
then arises as to how to quantify this 
nonlinear material response.  

One natural and rigorous approach is to 
represent the material response as a Fourier 
series5: 

τ (t;ω ,γ 0 ) = γ 0 ′′Gi cos iωt( )+ ′Gi sin iωt( )
i
∑⎧⎨
⎩

⎫
⎬
⎭

(1) 

 
Although the higher Fourier harmonics 

′Gi , ′′Gi{ }of the material response capture the 
mathematical structure of the measured 
waveform, they lack a clear physical 
interpretation. We thus seek to develop a 
framework for physically interpreting 
deviations from linearity which considers 
the 2D space of frequency and strain-
amplitude first discussed by Pipkin to 
generate a unique ‘rheological fingerprint’ 
of a complex fluid.  

We build on the earlier geometrical 
interpretation of Cho et al. (2005)6 which 
decomposes a nonlinear stress response into 
elastic and viscous stress contributions using 
symmetry arguments so that the stress in eq. 
(1) is given by: 
 

( ) ( ))()(),;( 0 ttt oddeven γτγτγωτ &+≡        (2) 

 
 We then use Chebyshev polynomials of the 
first kind as orthonormal basis functions to 
further decompose each of these two 
stresses into harmonic representations  
 

τ even = γ 0 eiTi (x)
i=1

N

∑         (3) 

τ odd = γ 0ω viTi (y)
i=1

N

∑         (4) 

 
where the elastic and viscous material coeff-
icients are ei  and vi  respectively, the 
(scaled) strain is x ≡ γ (t) γ 0 = sinωt  and 
the shear rate is tty ωωγγ cos)()( 0 =≡ & . 
From symmetry arguments regarding the 
form of the stress we expect all even 
coefficients (i = 2, 4, … ) in these 
expansions to be identically zero.  

The motivation behind this 
representation is three fold: firstly at each 
order i of approximation, the Chebyshev 
polynomials are orthogonal – fitting the 
material data to a higher order N thus does 
not change the lower order coefficients for   
i = 1,…N–1. This is in contrast to other 
polynomial representations used in the past6. 
Secondly, in the linear domain the material 
response is elliptic and can be completely 
described by the leading order coefficients; 
i.e. e1 → ′G (ω )  and v1 → ′′G (ω ) .  Finally, 
the temporal response of the system can be 
readily reconstructed if desired through the 
following identity for Chebyshev poly-
nomials: Ti (y) ≡ Ti (cosωt) = cos iωt .   
 
RESULTS  

We first apply these ideas to model 
hypothetical systems such as a neo-Hookean 
elastic solid or a generalized Newtonian 
fluid (e.g. a Carreau fluid) to show that a 
strain-stiffening elastic response is indicated 
generically by a positive 3rd order elastic 
Chebyshev coefficient, e3 > 0, whereas 
shear-thinning is always indicated by a 
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negative 3rd order viscous Chebyshev 
coefficient, v3 < 0. 

Sample experimental results for the 
response of a mucin film at ω = 1 rad/s and 
a strain amplitude of γ 0 = 3  are shown in 
Fig. 4.  The measured response is shown in 
the time domain by the solid blue line, and 
the elastic contribution to the stress τ e γ( ) is 
shown by the red line. The nonlinear regime 
is clearly identified in the spectral domain 
by the presence of higher order Chebyshev 
coefficients. 

 

 
 

 
Figure 4. (a) Lissajous figure of the total 
stress (shown in blue) as a function of the 
oscillatory strain amplitude together with 
the elastic contribution to the stress (solid 
red line); (b) modal decomposition of the 
individual Chebyshev contributions ( ei ) 

to the elastic stress τ e . 
 

A simple linear fit to this data (i.e. the 
first harmonic contribution calculated by 
standard rheometer software) is shown by 

the broken line and is clearly an inadequate 
representation of the material response.  The 
sign of e3  shows that the gel is strain 
stiffening and the magnitude of e3 e1  
provides a quantitative measure of the 
degree of nonlinearity. The two mode 
reconstruction of the material response 
(shown by the green dotted line) provides a 
very good description of the actual material 
response. 

In general, this new elastic/viscous 
modal decomposition is invaluable for 
characterizing and for verbally describing 
the nonlinear rheological response in a wide 
range of materials including biopolymer 
gels, regenerative polymer networks, 
entangled melts and micellar solutions.  
 
The Pipkin Diagram 

The nonlinear material response can be 
measured over a range of frequencies and 
strain amplitudes to generate values of 
ei (ω,γ 0 )  and vi (ω,γ 0 ) . The remaining 
question then becomes: how best to 
represent the wealth of material information 
that comprises the distinct rheological 
signature of a given material in large 
amplitude oscillatory shear flow? One 
approach we have found especially useful is 
to represent the responses in the form of a 
Pipkin diagram7 in which the variation in 
the material response with imposed 
frequency (or Deborah number) and with 
strain amplitude are represented on the 
abscissa and ordinate axes respectively. We 
demonstrate this approach graphically in 
Fig. 5 (overleaf) using data for a wormlike 
micellar fluid (consisting of 100 mM 
cetylpyridinium chloride in salicylic acid).  
Each individual curve corresponds to a 
Lissajous figure at a specified pair of 
coordinate values ω ,γ 0[ ].  Each Lissajous 
curve can also be analyzed to extract the 
viscous and elastic stress contributions.  The 
individual Chebyshev contributions to the 
elastic stress and the viscous stress can also 
be obtained as described above. These 
values can then be represented in terms of 
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contour plots of ei (ω,γ 0 )  and vi (ω,γ 0 )  if 
desired. 

 

 
 
  

 
Strain-Amplitude γ 0 = [0.1, 0.316, 1, 3.16, 10]   

 
 
 

Frequency: ω = [0.15, 0.75, 3, 15] rad/s 
 

Figure 5. A Pipkin diagram showing the evolution of the material response in LAOS for a 
wormlike micellar fluid (CPyCl/NaSal) as a function of test frequency and strain amplitude. 

 
 

The blue lines in Fig. 5 show the total 
oscillating stress τ (t;ω ,γ 0 ) and the red 
broken lines represent the elastic 
contribution to the stress. The viscous 

contribution can of course be found from the 
difference between these two curves. 

The familiar linear viscoelastic response 
of the system corresponds to small strain 
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amplitudes (γ < 1) and in this regime the 
material trajectories in each Lissajous figure 
are purely elliptical. As the imposed test 
frequency increases, the material shows the 
expected transition from the response of a 
viscously-dominated fluid (circular 
trajectory) to an elastically-dominated gel. 
As the strain amplitude increases the 
material response becomes more complex 
and the stress shows both strain-stiffening at 
moderate strains and also strain-softening 
characteristics at very high strains. The 
same information can also be plotted in 
terms of stress vs. shear rate to reveal the 
rate-dependence in the material response. 
 
CONCLUSION 

We have presented a new framework for 
systematically decomposing and analyzing 
the linear and nonlinear material responses 
of complex fluids and soft solids such as 
biopolymer gels. This framework considers 
the stress to be composed of a purely elastic 
and purely viscous term and then represents 
each contribution in terms of a series of 
orthogonal Chebyshev polynomials. This 
framework is consistent with earlier 
approaches such as Fourier decomposition, 
but offers the additional benefit of ascribing 
a clear physical significance to each 
Chebyshev coefficient. The resulting 
material response can be compactly 
represented by contour plots of the 
coefficients or by arrays of Lissajous figures 
in a two-dimensional Pipkin space. Every 
nonlinear viscoelastic material exhibits a 
unique response in this Pipkin space, and 
these images thus represent a distinct 
rheological fingerprint characterizing the 
material.   
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