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ABSTRACT

Accurate rheological characterization of fluids is of critical importance in a range of ap-
plications. A challenge associated with viscometric flows of non-Newtonian fluids is that
both the shear rate and the shear stress will normally depend on the unknown viscosity of
the fluid. A further complication arises when physical properties of the fluid, such as the
spatial distribution of particles in particle-laden fluids, change over the course of the mea-
surement. To gain insight into the flow of non-Newtonian fluids and particle suspensions
in viscometric geometries, and how the fluid viscosity and neutrally buoyant particles
affect the measurement, we solve the Navier-Stokes equation for a three-dimensional Cou-
ette geometry using the lattice Boltzmann method. With the model, secondary flows is
observed at higher velocities, without major contributions in the torque measurement.
When the particles are added, a large impact in the shear-rate field is noticed.

INTRODUCTION

Accurate characterization of the rheological properties is often necessary, and viscometers
or more advanced rheometers are normally used for fluid characterization. In the partic-
ular case of the oil and gas industry, coaxial cylinder viscometers are the standard choice
at the rig site.

Most often, conversions from raw measurements (angular velocities and torques) to
shear rates and stresses are based on an assumption of a Newtonian fluid!, for which the
conversions are simple proportionality rules. However, for non-Newtonian fluids, these
simple conversions are not sufficient to obtain a correct flow-curve? as the relations from
rotational speed to wall shear rate, and from torque to wall shear stress depends on the
unknown fluid viscosity. Secondary flows must be accounted for, whether or not end-
effects take place depends not only on the rotation applied, but also on the rheological
behaviour of the fluid. Time et al® explored experimentally the presence of end-effects
in a rheometer-like geometry. With the aid of a dye, it was possible to notice that the
secondary flows were present and that those could also form cusps that could change the
boundary condition — which would directly impact the stress estimation.

73



L. Volpi et al.

In contrast with the Newtonian simplification, Skadsem and Saasen* recently analysed
the effects of power-law and Newtonian assumptions on the wall shear rate for Herschel-
Bulkley fluids in steady state laminar flows, with a particular emphasis on how the ratio
between radii can affect the quality of the hypothesis in the estimation of parameters.

Numerical simulation present a flexible alternative to estimate the fluid dynamics.
Lac and Parry® used computational fluid dynamic (CFD) software to model a concentric
cylinder rheometer and to provide an inverse method for estimating the steady state
rheological parameters of the fluid using the simulation data to extract the inverse model.
In this case, the rheometer presented a rotating cylinder and a fixed bob, where the bob
has a conical region at the top and a flat section at the bottom.

The lattice-Boltzmann method (LBM), even though computer-intensive, can adapt
to both non-Newtonian behaviour and complex boundary conditions in unsteady flows.
This last property makes the method well-suited for numerical simulation of problems
with moving boundaries, for instance flows involving particle suspensions.

In this work, LBM is used to solve the dynamics of a power-law fluid in a concentric
cylinder measurement geometry. In this case, there is a moving bob and a fixed cylinder.
The bob presents a flat top with a conical bottom region, as in contrast to the one
analysed by Lac and Parry®. In a first part, the full three-dimensional geometry of the
immersed region of the equipment is considered in the presence of a particle-free liquid.
In a second part, the rheometer geometry is reduced to a two-dimensional cross-section,
and the flow of a fluid containing neutrally buoyant particles is analyzed. The main goals
of this research are to: (i) evaluate the existence of end-effects in a concentric cylindrical
rheometer, as well as understand how those can affect the overall measurement even with
a small gap between the cup and the bob, and (ii) observe how neutrally buoyant particles
can impact the fluid rheological behaviour and the possible implications the particles can
have on rheological measurements.

MODEL AND METHODS

To model the dynamic flow of fluid in the rheometer, the LBM is used. This approach is
intrinsically transient® and thus is well-suited for capturing unsteady end-effects.

The lattice-Boltzmann model consists in the discretization of the space, the velocity
and the time domains of the Boltzmann equation, which generally yields:

Fi (X + At t + At) = F(X,t) +C(F, X, V), (1)

where F is the velocity density distribution function on the direction of the I** velocity
vector of the lattice (¢;), X and V are the Eulerian description of space and velocity,
respectively. The last term, C;, is the collision operator. The bulk properties of the fluid
are recovered by the statistical moments of F: p =", F, and pV =), ¢/ F;.

The following hypotheses made either concerns the model, or are intrinsic of the meth-
ods. The LBM solves the compressible form of the Navier-Stokes equation. In order to
address this, small numerical Mach numbers must be chosen. The constitutive relations,
however, are kept for an incompressible fluid.

It is also considered that the particles are perfectly spherical and that they present
a different time-scale in relation to the flow, and thus different simulation times can
be employed to solve the fully coupled system. While some overlap between particles
is expected during collision, the impact-related parameters are chosen as to avoid large
overlaps”.
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At this point, the development of the model is split into two cases: (i) a three di-
mensional model of the rheometer and (ii) a cross-section where the particulate phase is
added.

3-DIMENSIONAL MODEL

The first model is based on an annular shear-flow where the inner cylinder rotates. The
cross-section of the rheometer is presented in Fig. la with the assumed boundary con-
ditions. The moving bob presents a conical region at the bottom and a flat top. Figure
1b presents the fixed bob/moving cylinder configuration from Lac and Parry®, which is
not explored this work

For the three-dimensional case, the 19-velocities set is used — each defined by an
arrow and the zero-velocity vector —, in accordance to Fig.2, as it presents a balanced
compromise between accuracy and efficiency!. Each lattice consists in a cubic element
with an edge of AX.

Outer
wall

/

(a) (b) FIGURE 2: The D3Q19 lattice.

FIGURE 1: In (a) there is the
moving bob/fixed cylinder con-
figuration and in (b) the fixed
bob/moving cylinder setup.

There are two boundary conditions in this case, a no slip wall condition, and a null
velocity gradient at the interface between the liquid and the air. The former can be
achieved by the use of the bounce-back method:

c -V
Fi(X t+ At) = Fi(Xy,t) — 2wip ZCQ b (2)
where [ defines the opposite direction of I, i.e.: ¢; = —¢;, and X, are the boundary nodes.

The sub-index b specifies the boundary region, e.g.: V, = V(X}). The weight function
w; is dependent on the lattice type whereas the lattice sound velocity, ¢, is attached to
both the numerical discretization and the lattice type.

The collision operator in this case is the Bhatnagar, Gross and Krook (BGK) operator,
and is defined as:

At (e
¢/ = = (F(p. V) = FiX). (3)
where the relaxation time 7 depends on the local viscosity n = pc?(7 —0.5At), and .7-"1(6‘1) is
the equilibrium distribution function approximated by .7-"1(6(1) = wp [1 + ﬂcz—v + % — %] .

For non-Newtonian fluids, the relaxation time is recalculated every time-step base on
the local shear-rate®, hereby estimated with the central difference scheme.
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2-DIMENSIONAL SUSPENSION MODEL

This second model share most of the properties of the previous one. Due to the reduced
dimension, the lattice only presents 9 velocities, one for each face of the lattice, other
four connecting to the diagonals and the zero-velocity. In order to acknowledge the solid
phase, the partially saturated method is adopted®. This changes the collision operator to:

a=(1-Xa )+ (Ta)e )

where 3, is a function of the volume fraction (b,) of particle p in its respective lattice and
is restricted by > 3, € [0,1]. The local volume fraction is estimated numerically by the
supersampling method '°. In this paper, the parameter? is simply 3, = b,.

For the collision term, relaxing the fluid to the equilibrium distribution of solids for
both incoming and bounced-back distributions provides a good accuracy '. This can be
represented as 1011

C; = [F(X t) — FEp, V)] — [Fi(X 1) — F P, Vp)], (5)

where V, = v, + w, x (x, — X,,) is the Eulerian description of a particle p with velocity
v, angular velocity w, and centered at the point x,,.
Each particle follows the discrete element method (DEM), where:

mo=fop+futfit+Ffr lWw=t,_,+t,+t,+15, (6)

where f,_, = ng] fij, fij is the interaction force between particles p and n, and N, is the

total number of particles. Similarly, ¢,_, = ng] t;; is the summation of the interaction
torques, both in accordance to'?:

H(6:5)[kn(6i5)0i5 + chv - €,]€,
fij = o
H(0:5)[ke(055)055 + crv - €;]é,

where H (6;;) is the step function, and is 1 if there is overlap and 0 otherwise, and r; = r;€,
is the radial vector of particle 1.

The generalized contact forces with the bob, f, and t,, are treated similarly where
the parameters k,, k;, ¢, and ¢; are adjusted to comport the difference in radii. The
forces regarding the wall (f, and t,) are a simplification of f,_,, where the wall radius
is considered much larger then the particles’ (r,, > r,) and that a maximum overlap is
expected for the calculation of the nonlinear stiffness and damping constants. This was
estimated by the equilibrium in the scenario where it is simply supported by the surface:
mg = fu,(0,). This strategy, in addition to the control of the stiffness’, was chosen to
minimize particle-particle/particle-bob overlaps within a feasible time-step.

Finally, the fluid forces are dependent on the solid collision operator?:

f1= 3 LK) Sie] =5 S8 e~ X x | SGie. ®

where AV = AZAX?, and AZ is a numerical estimation of the particle’s height in its
respective lattice and the sub-index p refers to a particle-related variables.

, bty =1 X .fij (7)

76



ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 30, 2022

RESULTS

In this section, the results for both models are presented. The non-Newtonian fluid
followed a truncated power-law fit to n(%) = 0.062|%|%%*  chosen from available data
from a rheometer of similar geometry. The torques on the bob were post-processed in
accordance to t, = > (xp — Xp) X (T - n)AA(z),n is the vector orthonormal to the
surface, and 7 = n(¥)%¥. The conical section was approximated by multiple cylinders with
the same height as the lattice (AX).

Initially, the 3-dimensional model was solved. FEach simulation was started with a
stagnant fluid but the bob already at the desired rotating speed. The results presented
are for instant ¢ = 6.5 s, where steady-state estimation is made by the evaluating the
relative variation of F: € = 1 — |F)| /| FCE|.

In Fig. 3c, three fields are presented for the rotational speed of 2 = 0.20 rad/s: (a)
the axial velocity, (b) the tangential velocity and (c) the shear-rate. The torque in the
z-direction is calculated to be t,. = 3.39 uNm with a 3.4% percent contribution from the
conical section and a 2.5% influence from the cylindrical section above the main cylinder.
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FIGURE 3: (a) Axial velocity, (b) tangential velocity and (c) strain-rate fields for the three-
dimensional simulation with bob speed of w = 0.2 rad/s at t = 6.5 s.

The figure (Fig. 4c) is similarly organized and contains the results for the case
2 = 6.00 rad/s. In this case, the components in the z-direction start to present a well-
defined gradient in both the upper and lower sections of the rheometer.

For the second case, the estimated torque in the z-direction is ¢,, = 38.93 uNm, where
approximately 5% originates from the conical region and close to 2.1% from the flat top
of the bob.

For the flow of fluid with particles in suspension, the coupled LBM-DEM framework
is solved asynchronously. A small uncertainty is added to both radial and angular intial
positions to avoid an uniform perturbation in the fluid.

In Fig. 6 the result at ¢ = 10.0 s is presented for an angular velocity of 2 = 6.0
rad/s at the bob. The particles are added in green over the velocity field for improved
visualization. In this case, there were 50 particles, each with a radius of 0.1 mm.

In Fig. 6a, the red line represents the average radial position of the particles, along
with black curves corresponding to the maximum and minimum limits. The dashed lines
represent the radii of the bob and cup. The curve in Fig. 6b is the torque per length-unit
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FIGURE 4: (a) Axial velocity, (b) tangential velocity and (c) strain-rate fields for the three-
dimensional simulation with bob speed of w = 6.0 rad/s at t = 6.5 s.
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FIGURE 5: (a) total velocity, (b) strain-rate with bob speed of w = 6.0 rad/s at ¢t = 10.0 s.

at the cross-section estimated by the momentum exchange method®.

DISCUSSION

In the first case, with low rotational speed and using the three-dimensional geometry, the
flow direction is predominantly tangential to the bob and, no relevant velocity field can be
observed in the axial direction. When the speed is increased, the occurrence of end-effects
is observed. In contrast, the shear-rate field seems to be unaffected.

When comparing the contributions in torque on each parts of the bob, a minor increase
is observed, specially in the conical section (from 3.4% to 5%). Yet, the main torque
contribution remains the one originating from the cylindrical section.

When particles are added, most of them agglomerate in small clusters. At some point,
the impact between particles would disrupt an agglomerate. It is clear that after 10 s, the
particles migrate to the low shear-rate region of the gap, as seen in Fig. 6a. Particles
closer to the bob seem to disturb the shear-rate field, increasing it. This is a strong
contrast with the expected behaviour of the Newtonian hypothesis, which might lead
to an unrealistic simplification, particularly in small gaps. A correlation in the average
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FIGURE 6: (a) Average radial displacement of particles through time. In red there is the
mean value and the black lines define the maximum and minimum positions, and (b) the torque
distribution at the cross-section, both with w = 6.0 rad/s at t = 10.0 s.

displacement and the torque per unit-length can observed when Figs. 6a and 6b are
analyzed. As the particles settle close to the low shear-rate region, the torque converges
to a value larger than what is observed with the three-dimensional model.

Given the layers of numerical methods involved, some level of uncertainty is expected.
The LBM with the BGK operator are generally second-order accurate schemes®. The par-
tially saturated method is known to be accurate, specially for smaller lattice-size/particle
ratios'®. The bounce-back method used for the wall boundaries truncates the curvature
into checkered sections, which adds to the uncertainties. The overlaps between particles
and the walls, seen in Fig. 6a, might induce small errors in the continuity equation.

CONCLUDING REMARKS

In this paper the dynamic flow of a power-law fluid is analyzed for a concentric cylindrical
rheometer with a rotating bob. A fully three-dimensional model has been studied for a
particle-free fluid. Thereafter, a two-dimensional model of the flow of fluid containing
neutrally-buoyant particles has been analyzed. The Navier-Stokes equation is solved with
the LBM and, for the reduced case, is fully coupled with the DEM.

With these simulations, it is observed that at higher rotational speeds, secondary
flows can be observed outside the main cylinder region. The presence of this secondary
flow, however, does not seem to impact significantly the estimated shear-rate. This is
a contrast with the observed in the moving cylinder/fixed bob configuration, where the
secondary flow influences the measurement®. Finally, the contributions of both the flat
and conical regions are slightly smaller then the standard correction factor'* of 10% for
similar geometry.

In the presence of particles, the shear-rate field become extremely particle-dependent,
showing large variations close to clusters. There is also an increase in the measured torque
which presented a correlation with the average particle position. This might imply that
further corrections are necessary in the case of particle suspension.

The way forward is to propose a reduced order model that can be further used in
the estimation of correction parameters and generalizing the model to other constitutive
relations. As well as modelling the particle suspension in a 3D scale with non-neutrally
buoyant particles.
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