Numerical simulations of buoyancy-driven droplets in non-Newtonian media using a variance-reduced, micro-macro, particle-level set method

Juan Luis Prieto

Departamento de Ingeniería Energética, E. T. S. Ingenieros Industriales, Universidad Politécnica de Madrid (UPM), Madrid, Spain

ABSTRACT

In this presentation we introduce the main features and explore the capabilities of a recently developed multi-scale, particle level-set method for the simulation of non-Newtonian fluids, termed SLEIPPNNIR [Comput. Methods. Appl. Mech. Eng, 307 (2016),164-192]. We show simulations of buoyancy-driven droplets rising in non-Newtonian media, featuring different viscoelastic effects.

INTRODUCTION

The origin of numerical methods for interface flows can be dated back to 1931 and the seminal paper by Rosenhead¹, where the method of "small oscillations" was used to predict vortex-shedding in a counterflow configuration. In 1957, Harlow² proposed the Particle in Cell (PIC) method surface deformation, using mass for particles carrying information about the species. From then on, most schemes have employed either of these latter approaches: namely, the description of the interface in a Lagrangian fashion by placing markers which follow and define the surface, usually adjusting the mesh to account for these changes; or the definition of the interface by means of a certain auxiliary implicit function dependent on the flow, producing an Eulerian scheme over a fixed mesh. The methods are commonly classified as *interface-tracking* or *interface-capturing* methods, according to the Lagrangian or Eulerian representation of the free surface.

Half a century later, the field of non-Newtonian Fluid Mechanics has taken advantage of the rich methodology developed for multiphase flows. However, Brownian Dynamics simulations of freesurface flows are still somewhat scarce in literature[.] the the CONNEESSIT approach³ was used e.g. by Grande et al.⁴ and by Prieto⁵; the Brownian Configuration Fields (BCF) method⁶ was applied by Bajaj et al.7; and recently, a Particle Level Set method with a variance-reduced technique was presented by Prieto⁸: the purpose of the next lines is to sketch the main features of this so-called SLEIPNNIR method.

MATHEMATICAL DESCRIPTION

The SLEIPNNIR technique uses a second-order accurate, Finite-Element discretization, along with a semi-Lagrangian approach ("method of the characteristic curves") to deal with the convective terms and to evolve the *level set* function defining each of the fluids in the domain, Eq.1:

$$\begin{cases} \frac{\partial \phi}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \phi = 0, & \text{in } D \times (0, T]; \\ \phi(\boldsymbol{x}, 0) = \phi_0(\boldsymbol{x}), & \forall \boldsymbol{x} \in D. \end{cases}$$
(1)

As the simulation goes on, the level set function loses its initial signed-distance property, so that a *reinitialization* step has to be carried out; in SLEIPNNIR, a second-order accurate redistancing scheme based on the eikonal equation¹⁰ is used for that purpose. Surface tension effects are

J. L. Prieto

considered through the Laplace-Beltrami¹¹ operator to circumvent the need for curvature computations, and thus avoid excessive oscillations due to highfrequencies when the mesh grows refined.

Non-Newtonian fluids are modeled by means of a *variance-reduced*, micro-macro approach, in which a collection of ensembles of polymer particles are scattered over the domain. The internal degrees of freedom of these *polymer particles* are advanced according to Eq. 2 (for details on the notation, see⁸):

$$d\mathbf{Q} = \left[\boldsymbol{\kappa} \cdot \mathbf{Q} - \frac{2}{\zeta} \mathbf{F}\left(\mathbf{Q}\right)\right] dt + \sqrt{\frac{4k_B\Theta}{\zeta}} d\mathbf{W},$$

(2)

with a suitable kinetic model such as "Hookean" or the "Finitely Extensible Nonlinear Elastic" (FENE) model providing the form of the elastic spring force in Eq. 2. The resulting polymer (extra-stress) tensor is then computed via a Compactly-Supported Radial Basis Function (CSRBF) approach providing a high-degree of mesh independency.

RESULTS

In this talk, we show numerical simulations of buoyancy-driven droplets rising in both Newtonian and non-Newtonian media, for a range of inertial, surface tension and viscoelastic effects. As an example, we next collect the isolines of the rise velocity in a series of droplets rising in a viscoelastic (FENE, b=20) fluid, using a mesh of size h=1/160 with the SLEIPNNIR method and FENE (b=20) model, for values of the Reynolds, Froude and Weber number of Re=35, We=35, Fr=1; the density and viscosity ratios between the fluids are 10; 50000 ensembles are scattered over the domain, each of them collecting 2500 dumbbells carrying the internal configurations of the polymer. As we see in Figs. 1 and 2, downward velocities (negative wake effect) arise at a certain point of the

Figure 1. Isolines of rise velocity at time t=3.5. Left panel: c=1,De=1;. Right panel: c=3,De=1.

Figure 2. Isolines of rise velocity at time t=3.5. Left panel: c=5,De=1;. Right panel: c=7,De=5.

simulation when the concentration parameter and the Deborah number are high enough.

CONCLUSIONS

Within its limitations, the SLEIPNNIR technique has good capabilities for the computation of accurate and efficient

simulations of multiphase, non-Newtonian flows, using a "micro-macro" stochastic approach.

ACKNOWLEDGMENTS

Financial support from project MTM2015-67030-P from Ministerio de Economía y Competitividad is acknowledged.

REFERENCES

1. Rosenhead, L. (1931), "The Formation of Vortices from a Surface of Discontinuity", *Proc. R. Soc. Lond. A*, **134**(823), 170-192.

2. Harlow, F.H. (1957), "Hydrodynamic Problems Involving Large Fluid Distortions", *J. Assoc. Comp. Mach.*, 4(2), 137-142.

3. Laso, M. and Öttiger, H.C. (1993), "Calculation of viscoelastic flow using molecular models: the CONNFFESSIT approach", *J. Non-Newtonian Fluid Mech.*, **47**, 1-20.

4. Grande, E., Laso, M. and Picasso, M. (2003), "Calculation of Variable-Topology Free Surface Flows Using CONNFFESSIT", *J. Non-Newtonian Fluid Mech.*, **113**, 127-145.

5. Prieto, J.L. (2015), "Stochastic particle level set simulations of buoyancy-driven droplets in non-Newtonian fluids", *J. Non-Newtonian Fluid Mech.*, **226**, 16-31.

6. Hulsen, M.A., van Heel, A.P.G. and van den Brule, B.H.A.A. (1997), "Simulation of viscoelastic flows using Brownian Configuration Fields", *J. Non-Newtonian Fluid Mech.*, **70**, 79-101.

7. Bajaj, M., Bhat, P.P., Prakash, J.R. and Pasquali, M (2006), "Multiscale simulation of viscoelastic free surface flows", *J. Non-Newtonian Fluid Mech.*, **140**, 87-107.

8. Prieto, J.L. (2016), "SLEIPNNIR: A multiscale, particle level set method for Newtonian and non-Newtonian interface flows", *Comput. Methods Appl. Mech. Engrg.*, **307**, 164-192.

9. Bermejo, R. and Prieto, J.L. (2013), "A Semi-Lagrangian Particle Level Set Finite Element Method for Interface Problems", *SIAM J. Sci. Comput.*, **35**(4), A1815-A1846.

10. Cheng, L.T. and Tsai, Y.H. (2008), "Redistancing by flow of time dependent eikonal equation", *J. Comput. Phys.*, **227**, 4002-4017.

11. Gross, S. and Reusken, A. (2007), "Finite element discretization error analysis of a surface tension force in two-phase incompressible flows", *SIAM J. Numer. Anal.*, **45**, 1679-1700.