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ABSTRACT

We discuss recent models on the dy-
namics of shear band formation and tran-
sient shear banding. The approach here
is that of simple rheology, which describe
the structure of the complex �uid's inter-
nal phase using a relaxation kinetics equa-
tion. This way, the structure of the �uid is
described in the simplest case using a sin-
gle parameter. The state of the structure,
in turn, is mapped to the continuum char-
acteristics of the �uid via the appropriate
constitutive equations giving the possibil-
ity to simulate the �uid rheology. Coupling
these models with a continuum descrip-
tion of the �ow �eld, allows for studying
spatial and temporal �ow heterogeneities,
for instance shear banding. Here we con-
sider in detail the evolutions of velocity
and shear rate pro�les in the Couette ge-
ometry during a start-up phase, experi-
mentally demonstrated to show transient
shear banding even in materials shown to
posses monotonous �ow curves. Using this
simple approach we �nd that the under-
lying reason for such start-up instabilities
is the non-homogeneous shear distribution,
which is ampli�ed due to a positive feed-
back between the �ow �eld and the viscos-
ity response of the time-dependent �uid.
As we will demonstrate, this o�ers a sim-
ple explanation for the recent observations
of Transient Shear Banding not only lim-
ited to simple yield stress �uids.

INTRODUCTION

The characteristic property of complex
�uids is their non-linear shear rate � stress

relation called the �ow curve. These ma-
terials are generally formed of an inter-
nal, structure forming phase surrounded
by a dispersing liquid medium.1 Such com-
plex �uids can have states resembling both,
solid and liquid states.2 Obviously, their
characteristics can lead to highly non-
trivial �ow behaviors such as shear banding
and rheo-chaos3.

In shear thinning �uids, such as some
aggregating colloids, emulsions, and micro-
gels, the structure usually gets less orga-
nized at higher shear rates, and at van-
ishing shear rates, a space �lling internal
structure is formed4 leading to a dynam-
ical arrest at vanishing shear rates.5 This
space �lling structure, is responsible for the
materials solid-like properties, such as its
ability to support load, i.e. yield stress.6

While in some materials, this structure can
also evolve without the presence of external
stress, modifying the yield stress, in others,
no evidence of this kind of ageing is ob-
served. This has lead to the crude catego-
rization of complex �uids into thixotropic,
and simple �uids.7 Apparently also the
simple �uids show time-dependent proper-
ties, in a less pronounced way, however.8

What remained clear, was that shear band-
ing was only observed in the thixotropic
�uids, and not in the simple ones. This
was thought to be related to the shape of
the intrinsic �ow curve in each case.

Recently, a di�erent type of shear band-
ing was observed also in the simple yield
stress �uids.9 Due to its appearance only
during the start-up phase, this was called
transient shear banding. At �rst sight, this
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seemingly contradicted the present under-
standing for the reasons of shear banding.
The main issue was that since these sim-
ple yield stress �uids do not have non-
monotonic �ow curves, how is it possible
for them to shear band at all. Further-
more, this type of shear banding or gradual
�uidization was observed to show charac-
teristics typically seen in phase transitions,
for instance critical scaling for the �uidiza-
tion times with both imposed strain rate
and stress. This hinted to the possibility
of probing the time-scales related to the
�uid relaxation, giving the possibility to
�nd models beyond the steady state ones
for obtaining deeper understanding of the
yielding process.

In this paper we review our modeling
work performed to understand the start-
up �ows that seem to imply a new way
of probing the yielding transition in com-
plex �uids. We address the related open
issues using simple scalar λ-models, trying
to understand if the critical scaling, and
the related exponents could be due to the
material, or the experimental setting, or
possibly, both. The rest of the paper is or-
ganized such that �rst, we give an overview
of the models applied, then we will discuss
in detail the transient behavior of the �ow
pro�les and the related stress over-shoots
in the light of related experiments, and �-
nally, we make some conclusions, and dis-
cuss on the related open questions.

MODEL

We start by describing the evolution of
the �uids internal structure described us-
ing a scalar parameter λ. The time evolu-
tion of this parameter is given by10

dλ

dt
=

1

τ
− αγ̇λ, (1)

where τ is the characteristic timescale for
the structure build-up, and α is the scale
of the structure destruction due to shear.
The internal structure parameter relates to
the viscosity of the �uid via a simple linear
equation, which reads

η(λ) = η0 (1 + βλn) . (2)

There, η0 is the liquid viscosity, and β and
n are material dependent parameters, the
latter controlling the linearity of the vis-
cosity function with respect to λ. From

this equation it follows, that at λ = 0,
where the structure is completely broken,
the �uid has the viscosity of the surround-
ing medium, whereas when λ → ∞, the
structure approaches complete, also the
viscosity diverges. Given the stress con-
sists only of the viscous one (σ = γ̇η), later
referred to as the viscous model the yield
stress can be written as

σy =
β

τα
. (3)

The steady state of such simple phe-
nomenological model captures the behav-
iors of shear thinning (n < 1), simple yield
stress (n = 1), as well as thixotropic �u-
ids (n > 1) as discussed in earlier studies10

and demonstrated in Fig. 1.
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Figure 1. The steady state of the model
showing shear thinning, simple yield
stress, and thixotropic behaviors.

In real materials, the stress has in gen-
eral both viscous and elastic components.
Elastic stress can be incorporated to the
previous �uid model by taking the con-
stitutive relation of a Maxwell stress ele-
ment instead of the viscous one11. Now
the stress equation reads12

σ = η(λ)γ̇ − η(λ)

G0

∂σ

∂t
(4)

where G0 is the shear modulus. Here,
the stress consists additionally to a viscous
term, with an elastic term, which is pro-
portional to the rate at which the stress
changes and the inverse of the systems elas-
tic modulus. This implies that fast transi-
tions in the stress �rst cause loading of the
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elastic stress, which then relaxes through
viscous dissipation. Later in the text this
will be referred to as the elastic model.
Clearly, this de�nition of stress only has an
in�uence during the shear transients, and
therefore, the steady state of the viscous
and elastic models are the same.

In shear banding, the shear rate and
viscosity vary over a spatial coordinate of
the system considered. To model such ef-
fects, we solve the structural model in con-
junction with the Navier-Stokes equation
evolving a separate structural model lo-
cally. For the Navier-Stokes equation, we
apply the boundary conditions of cylindri-
cal Couette geometry in order to be able to
compare the results with recent experimen-
tal data obtained for simple yield stress �u-
ids.9 These boundary conditions give for
the local shear rate

γ̇(r) =
Ωb − Ωa

r2η(r)
∫ Rb

Ra

1
r3η(r)

dr
, (5)

where r is the radial position measured
from the Couette center, Ωa (Ωb) is the
angular velocity of the inner (outer) cylin-
der, and Ra (Rb) is the radius of the inner
(outer) cylinder. In these simulations we
apply Ra = 2.39 cm and Rb = 2.50 cm
which are typical values for a narrow gap
Couette device and similar to the geometry
used in the �rst observations of transient
shear banding in carbopol gels13. More-
over, we keep the outer cylinder �xed,
while controlling the angular velocity of the
inner cylinder to �x either the global shear
rate given by

〈γ̇〉 = (Ωb − Ωa)
2RaRb

R2
b −R2

a

, (6)

or the stress at the inner cylinder, depend-
ing on the driving mode. To solve the time
evolution, we discretize the gap (r) in 450
equally dimensioned shells. We integrate
the thus formed set of di�erential equations
using the SUNDIALS CVODE solver rou-
tines.14

RESULTS

In the start-up experiments, the sam-
ples are initially under no shear, having
solid-like properties. This, in terms of the
structural model, means that the struc-
ture is maximally organized, in the present

model implying λ0 → ∞. Since in the
simulations we are bounded by the �oat-
ing point range, we initialize the system to
a high viscosity state, where λ0 is large,
but �nite. This implies that the system
is always in a �owing state, and the liquid-
solid phase transition is completely absent.
Similarly to the experiments, we start the
�ow at t = 0 and observe the local shear
rate and velocity behaviors. In the vis-
cous model, we �nd that after a short ini-
tial induction period having linear velocity
pro�le, the shear localizes gradually right
next to the rotor, as visualized in Fig 2.
Such process occurs rather quickly, here
in a matter of a few seconds. This local-
ization could in practice be confused with
wall slip, however, in the present model,
the boundary conditions �x the �uid ve-
locity at the wall, and therefore this local-
ization is simply a structural property of
the �uid. This shows that for �uids hav-
ing time-dependent shear thinning proper-
ties, this kind of behavior is intrinsic to the
�uid, and can not be avoided by any of the
traditional methods of avoiding wall slip.15

After the shear is almost completely lo-
calized at the rotor, the high shear regime
starts to grow due to the delayed relaxation
of the quiescent band into a full blown high
shear band, which gradually continues to
advance towards the rotor. Finally, once
the steady state is reached in the whole
geometry, the shear band has reached the
stator. A typical example of such relax-
ation process is shown in Fig. 3.

Although, this relaxation process re-
sembles quite closely the transient shear
bands experimentally observed in carbopol
gels,9, there are some di�erences. For in-
stance, the experiments �nd elastic back-
ward �ows when the "wall slip" appears.
Moreover, they �nd slowly building stress
over-shoots, which do not comply with a
purely viscous model. Finally, during the
relaxation period, the shear rate in the
whole quiescent band seems to increase
simultaneously with the shear band edge
movement in the radial direction.16

The start-up �ow results of the elastic
model follow those of the viscous one until
the shear begins to localize near the ro-
tor11. When the localization of the shear
starts, an elastic backward �ow appears,
during which the high shear band begins
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Figure 2. Initial stage of the transient
shear band in the Couette gap. Plotted
are the shear rate (upper panel) and the
corresponding velocity (lower panel)
pro�les. The applied simulation

parameters are α = 0.1, τ = 0.001,
η0 = 1.0, β = 0.003, λ0 = 2.5 · 106, and

〈γ̇〉 = 2.5 s−1.

to form. Despite the fact that the elastic
backwards �ow appears very quickly, the
overall time for the shear localization is
longer for the viscoelastic �uid compared
to the viscous one.

The transient shear band relaxation for
the viscoelastic model, reported in Fig. 5,
also di�ers from the viscous case. Here,
the shear bands relax rather in a collec-
tive manner, than via a moving boundary;
the shear rate in the quiescent band in-
creases simultaneously to the decrease of
the shear rate in the highly sheared band.
This agrees with the experimental observa-
tion, that the quiescent band is not com-
pletely static, but evolves throughout the
�uidization.

The stress evolution curves plotted for
the viscoelastic case in Fig. 6 show stress
over-shoots, the magnitude of which de-
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Figure 3. Shear band relaxation in the
Couette gap. The simulation parameters

are the same as in Fig. 2.

pends on the λ0. The stress �rst increases
due to the elastic loading of the system.
After the stress maximum, the viscous dis-
sipation starts to play a signi�cant role as
the structure is more broken at the ro-
tor. At the same time, when the stress
drops, an elastic backward �ow is observed
in the velocity pro�les, which creates the
transient shear band. Once the transient
shear band is created, the stress relaxation
slows down, and starts decreasing with a
completely di�erent slope. Thus, the exis-
tence of the transient shear band can also
be observed in the stress evolution curves,
again, in agreement with the carbopol ex-
periments16. As can be seen in the �g-
ure, the over-shoot gets smaller with de-
creasing λ0. Similarly, the transient shear
bands get less and less pronounced, and �-
nally do not appear at all in the case where
the over-shoot is non-existent. Such de-
pendence on the initial structure is sensible
also in the practical viewpoint, indicating
that the history of the sample in�uences
the stress over-shoot. The more the sam-
ple is pre-sheared, and the less time is left
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Figure 4. Shear band formation in the
Couette gap for the viscoelastic stress

model. Plotted are the shear rate (upper
panel) and the corresponding velocity
(lower panel) pro�les. To produce the
�gures we applied α = 0.1, τ = 0.001,

η0 = 1.0, β = 0.003, G0 = 5.0,
λ0 = 2.5 · 106, and 〈γ̇〉 = 2.5 s−1.

for recovery, the smaller is the stress over-
shoot.

The transient shear band life-times, the
�uidization times, can be measured from
these systems by tracking the shear band
edge location in the gap. Experimentally,
the �uidization time was observed to scale
according to a power-law with respect to
both, the global shear rate, and with the
imposed (reduced) stress.9 In these models
we trace the shear band edge by following
the position of the maximum of the shear

rate's spatial derivative, δ := max
[
∂γ̇(r,t)
∂r

]
,

where the discontinuous transition between
the two shear rates occurs. Once the po-
sition of this quantity reaches either edge
of the simulation grid, the system is de-
�ned as �uidized. Tracing the �uidization
times in both the viscous and viscoelas-
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Figure 5. Shear band relaxation in the
Couette gap for the viscoelastic stress

model. The same parameters as in Fig. 4
are applied.

tic models gives the �uidization time a
power-law like dependence with both, the
global shear rate (Fig. 7), and the reduced
stress (Fig. 8). In the shear rate controlled
case, the power-law scaling applies only at
high shear rates due to an e�ect called the
shear localization.17 This is related to the
plateau of the �ow curve at small shear
rates, which is more pronounced in the
model compared to the carbopol, which
causes a more pronounced shear rate vari-
ation in the Couette at small global shear
rates. This prevents complete �uidization
at small imposed global shear rates, and
therefore, makes the �uidization times di-
verge. However, the exponents of these
power-laws di�er from the carbopol exper-
iments9, here, having the values close to
−1 in all the cases, and in the experiments
close to −2 and −4 for the shear rate con-
trolled and stress controlled cases, respec-
tively. In one of our papers,18 we demon-
strated, how these exponents are deter-
mined by the structural kinetics equation,
and in particular, the dependence of the

159



100 101 102 103

t [s]
101

102

103
σ

[P
a]

λ0 = 2.5 · 103

λ0 = 2.5 · 104

λ0 = 2.5 · 105

λ0 = 2.5 · 106

λ0 = 2.5 · 107

Figure 6. Stress over-shoots in the
viscoelastic model with di�erent initial
structural parameters. The to produce

the �gure, we applied α = 0.1, τ = 0.001,
η0 = 1.0, β = 0.003, G0 = 5.0, and

〈γ̇〉 = 2.5 s−1.

structure break-down term on the shear
rate. We showed, that changing this par-
ticular exponent, the power-law �uidiza-
tion time scaling exponents can be tuned.
However, still, both the stress and shear
rate controlled cases had the same expo-
nents. Same holds for the models we have
discussed here.

Based on experimental �ndings, the
two �uidization times are proposed to be
related with the steady state Herschel-
Bulkley model

σ = σc + Aγ̇k, (7)

such that the Herschel-Bulkley exponent
would be given by the two scaling exponent
as k = a

b
, where a is the one correspond-

ing to the shear rate controlled �uidiza-
tion, and b is the one corresponding to the
stress controlled �uidization. Such relation
comes out in a trivially from these simula-
tions, since, as in the high shear rates the
viscosity saturates to η0, the stress scales
as σ ∼ γ̇, the Herschel-Bulkley exponent is
1. Hence for this relation, we �nd 1

1
= 1

for all the models (roughly for the elastic
model). Thus, this trivial relation leaves
the experimental observation uncon�rmed.

CONCLUSIONS

We have reviewed recent studies of
transient shear banding. These were
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Figure 7. Fluidization times show a
rough a power-law dependence with the
global shear rate in the large shear rates,
whereas at small shear rates they diverge
due to shear localization. The simulation
parameters α = 0.1, τ = 0.001, η0 = 1.0,
β = 0.003, and λ0 = 2.5 · 106 are applied.

�rst experimentally observed in a Couette
rheometer in in carbopol gels9, known as a
typical example of simple yield stress �u-
ids, but since then also in aging soft glassy
materials.19 We demonstrated, how these
non-homogeneous start-up �ows, could be
explained by the geometry induced shear
inhomogeneity, which is ampli�ed by the
�uid relaxation. We showed, how many of
the features, such as the relaxation paths
are reproduced by the models, but also
some open questions have been left unex-
plained. The most crucial one is the origins
of the di�erent �uidization time scalings of
the shear rate and stress controlled exper-
iments. It can be speculated, that since
here we use a Maxwell stress model, it can-
not well describe the creep-like features re-
lated to the stress controlled runs during
the yielding phase. This has a direct impli-
cation, that adding a Kelvin-Voigt type of
stress element to the Maxwell model could
resolve these issues.

Furthermore, similar �ow instabilities
related to the start-up �ow have been
also reported with cone-and-plate geome-
try. At �rst thought, this particular geom-
etry should impose a homogenenous stress
distribution, and therefore should not have
similar mechanism for the shear band for-
mation. However, even in such devices the
stress varies slightly, which due to the fact
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Figure 8. Fluidization times scale as a
power-law with the reduced stress in the

stress controlled simulations. For
simulating the data, same parameters as

in for Fig. 7 are used.

that the shear thinning tends to amplify
the stress variations, can infact lead to sim-
ilar behavior. Moreover, the structure con-
tact with the walls is even in those cases
imperfect, which can initiate the �ow in-
stability.
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