
 

ABSTRACT 
In this study, the planar extrudate 

swelling of power-law and Oldroyd-B fluids 
are investigated. Our numerical predictions 
are in good agreement with the other results 
available in the literature. In addition, a 
simplified two-dimensional model of fused 
filament fabrication that provides details of 
the flow in the gap between the printing 
head and the substrate is presented. The 
numerical simulations use the 
streamfunction/log-conformation and the 
volume-of-fluid methods. 

 
INTRODUCTION 

The simulation of non-Newtonian free-
surface flows is an important topic of 
computational rheology. The free-surface 
flow simulations of non-Newtonian fluids 
have several applications in polymer 
processing. Extrusion and fused filament 
fabrications are two examples of these 
applications related to the manufacturing of 
plastic parts. Fused filament fabrication is a 
popular 3D-printing technique, based on the 
extrusion of a molten filament deposited on 
a moving substrate. In this technology, the 
size of printed filament is a key fabrication 
parameter, as it both determines the 
fabrication time and the precision of the 3D 
print. 

The optimal processing parameter often 
depends on the rheology of the material. 
Numerical simulations can help 
understanding the flow mechanism. Shape 

optimization algorithms and sensitivity 
analysis built on numerical simulations have 
successfully been applied to develop 
computer-aided design strategies for 
extrusion dies1,2,3. 

Generally, non-Newtonian fluids are 
either characterized by a non-constant 
viscosity that depends on the flow 
conditions (shear-thinning and pseudo-
plastic liquids), or by a time-dependent 
stress response that includes an elastic stress 
component representing the recoverable 
deformations coming from the stretching of 
polymer chains (viscoelastic liquids). 
Extrudate swelling is a typical phenomenon 
influenced by shear-thinning and 
viscoelasticity. 

This conference paper presents 
numerical results of two-dimensional 
simulations of the extrudate swelling and the 
fused filament fabrication of non-Newtonian 
fluids. The models focus on the flow regions 
near the die exits. The results are computed 
with a novel non-Newtonian flow solver, 
based on the streamfunction/log-
conformation method of Comminal et al.4,5.  
 
GOVERNING EQUATIONS 

The isothermal creeping flows of the 
incompressible non-Newtonian fluids are 
governed by the conservation of mass and 
momentum: 
 

0∇⋅ =u    (1) 
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where u  is the velocity field, τ  is the 
internal stress, p  is the isostatic pressure, 
ρ  is the density, and t  is the time variable. 
The momentum convection terms in Eq. 2 
are neglected, because of the assumption of 
a creeping flow. However, the time 
derivative ( )t∂ ∂u  is kept in Eq. 2, because 
of possible transient stress responses of the 
non-Newtonian (viscoelastic) fluids. The 
conservation laws are closed by the 
constitutive model, which links the internal 
stress to the strain-rate tensor 
 

( )T1
2

= ∇ +∇D u u    (3) 

 
Several constitutive models are 

considered. The non-Newtonian materials 
with instantaneous stress responses are 
represented with the generalized Newtonian 
fluid model: 
 

( )22 Iη= Dτ D   (4) 
 

where ( )2Iη D  is the apparent viscosity of the 
material, which may depend on the 
invariants of the strain-rate tensor. The first 
invariant ( )1 trI =D D  is zero, because of the 
incompressibility constraint (Eq. 1). The 
second invariant is given by: 
 

( )22 tr ij ji
i j

I D D= =∑∑D D   (5) 

 
In our study, the apparent viscosity is 
modelled with the Carreau fluid model: 

 

η I2
D( ) =η0 1+ k !γ( )

2⎛
⎝
⎜

⎞
⎠
⎟

n−1
2   (6) 

 

where !γ = I2
D  is the magnitude of the 

shear-rate tensor in the Frobenius norm, and 
0η , k  and n  are material properties. The 

Carreau fluid model typically predicts a 
smooth transition between a plateau 
viscosity 0η , for k !γ ≪1 , and a power-law 
behaviour with power-index n , for k !γ ≫1 . 
However, we intentionally chose a very low 
value for k  ( )610−= , and a large value for 

0η  ( )810= , such that the Carreau model 
essentially behaves as a power-law fluid 
with a consistency 1

0
nK kη −= , and a 

maximum cut-off value of the apparent 
viscosity max 0η η= , when the flow is close 
to the quiescent state. The Newtonian fluid 
model recovered for 1n = . 

Materials with time-dependent stress 
responses are modeled with viscoelastic 
constitutive models. We consider the case of 
a linear viscoelastic material described by 
Oldroyd-B model: 
 

N E= +τ τ τ    (7) 
 
where 
 
N 2βη=τ D    (8) 

 
is the instantaneous (purely viscous) stress 
response of the material, and 
 

( ) ( )E

1 β η

λ

−
= −τ c I    (9) 

 
and Eτ  is the time-dependent extra-stress 
contribution. The extra-stress tensor is 
related to the conformation tensor c , 
representing the internal elastic strain of the 
liquid. The constant viscosity η , the 
retardation ratio β , and the relaxation time 
λ  are material parameters, while I  is the 
identity matrix. 
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The conformation tensor is governed by 
the following partial differential equation: 
 

( )1
λ

∇

= − −c c I    (10) 

 
where 
 

( )T

t

∇ ∂
≡ + ⋅∇ − ⋅∇ +∇ ⋅
∂

cc u c c u u c   (11) 

 
is the upper-convective time-derivative, 
which accounts for the material transport 
and the frame-invariance of the 
conformation tensor. 

The relative effect of the elastic stresses, 
as compared to the viscous stresses, is 
quantified by the dimensionless 
Weissenberg number Wi , defined as: 
 
Wi = λ !γc    (12) 
 
where !γc  is the characteristic shear-rate of 
the flow. The retardation ratio β  is also a 
dimensionless parameter controling the 
fractions of the viscosity that contribute to 
the instantaneous and the time-dependent 
stress responses. 
 
NUMERICAL METHOD 

The non-Newtonian free-surface flow is 
simulated as a two-phase flow, where the 
second phase corresponds to the air 
surrounding the liquid. The volume-
averaged governing equations of the two-
phase flow are solved with the numerical 
scheme proposed by Comminal et al.4,5. 
The partial differential equations are 
discretized with the finite-volume method, 
on staggered Cartesian grids. An implicit 
second-order accurate scheme is obtained by 
using the two-level backward differentiation 
formula for the temporal differentiations, 
centred finite-differences for the diffusion 
fluxes, and the CUBISTA interpolation 
scheme6 for the advection fluxes. 

The linear system of the discretized 
conservation equations is solved with the 
exact fractional step method of Chang et 
al.7. On the discrete level, this exact 
fractional step method is equivalent to the 
pure streamfunction formulation8, where the 
conservation laws are solved in the curl 
form. This exact projection method enforces 
by construction the mass conservation. 
Moreover, the streamfunction formulation is 
particularly advantageous in the 2D case, as 
it reduces the number of unknowns. 

The components of the extra-stress 
tensor of the viscoelastic fluids are solved 
with the log-conformation representation 
method of Fattal and Kupferman9,10. The 
non-linearity between the velocities and the 
extra-stresses are solved with successive 
substitution iterations. 

The position of the free-surface is 
captured with the volume-of-fluid method 
and a piecewise linear interface 
reconstruction11. The liquid volume 
fraction of the non-Newtonian phase is 
advected with the cellwise conservative 
unsplit geometrical advection scheme 
proposed by Comminal et al.12. 
 
SIMULATION RESULTS 

This section presents numerical results 
of the planar extrusion and a simplified 
model of fused filament fabrication. 

 
Planar extrusion 

The planar extrudate swelling of power-
law and Oldroyd-B fluids exiting a slit die 
were simulated for various power-indices 
and Weissenberg numbers, respectively. The 
retardation ratio of the Oldroyd-B fluid was 
set constant to the value 1 9β = , in all the 
simulations. 

The geometry of the simulations 
consisted in the union of two rectangular 
domains representing the slit extrusion die 
and the planar expansion at the die exit. By 
virtue of symmetry, we only simulate half of 
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the geometry. A fully-developed flow is 
imposed at the inlet boundary of the die, 
while the outlet boundary far away from the 
die exit is constrained by the Neumann 
boundary condition. The no-slip boundary 
condition is applied at the wall of the die 
and the expansion plane. At the exit of the 
die, the parabolic fully-developed flow 
profile gets rearranged into a plug flow 
profile with a uniform velocity. The 
extrudate swelling Sr  is defined as the ratio 
of the extrudate thickness extrD  by the die’s 
width dieD : 
 

extr

die

DSr
D

=    (13) 

 
The planar extrusion was simulated on 

two different grids: a coarse mesh and a fine 
mesh. The grid spacing of the fine mesh is 
half of the grid spacing of the coarse one. 
Both grids present a contraction of their grid 
spacing near the die exit (where large strain-
rate are expected) in both directions. 

The numerical results of the extrudate 
swelling of the power-law fluids with 
various power-indices are reported in Fig. 1. 
As expected, the shear-thinning reduces the 
extrudate swelling. The fully-developed 
flow profile of the power-law fluid is: 
 

( ) ( )
1

0
2 1 1
1

n
n

nU y y h U
n

++ ⎡ ⎤= −⎢ ⎥+ ⎣ ⎦
  (14) 

 
where y  is the distance to the midline, 

die 2h D=  is the half width of the die, and 

0U  is the average velocity of the fully-
developed flow, see Fig. 2. The flow profile 
becomes closer to a plug flow profile, when 
the power-index is reduced (enhancing 
shear-thinning). Thus, the flow profile 
requires less rearrangement at the die exit, 
which ultimately reduces extrudate swelling. 

For the Oldroyd-B liquid, the fully-
developed creeping flow profile is identical 
to the Newtonian fluid. However, the 

Oldroyd-B liquid also develops a normal 
stress difference 1N  inside the die, in 
addition to the shear stress τ . The normal 
stress difference come from the elastic 
effects in the viscoelastic liquid. At the die 
exit, the relaxation of the elastic stresses, 
contributes to the extrudate swelling. Hence, 
the swelling ratio increases with the 
Weissenberg number 03Wi U hλ=  (here 
the relaxation time is normalized by the 
shear-rate at the wall !γw = 3U0 h ). 
       The different fields of the conformation 
tensor components are plotted in Fig. 3, for 

2Wi = . The data shows a stress singularity 
 

 
 

Figure 1. Extrudate swell of the power-law 
fluid as a function of the power-index n . 

 

 
 

Figure 2. Fully-developed creeping flows 
profile of the power-law fluids. 
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at the corner of the die. (For more clearness, 
the maximal values of the colorbars have 
been cut-off below the maximum values of 
the conformation tensor.) We can also see 
large tensile stresses in the skin layer of the 
extrudate, just after the die exit. 

The extrudate swelling of the Oldroyd-B 
liquid are represented in Fig. 4, together 
with other numerical solutions available in 
the literature. We must notify that our 
numerical solutions contain some small 
oscillations of the free-surface, at 2.5Wi =  
and 3Wi = , for the fine mesh only. These 
surface oscillations are numerical artefacts 
coming from the under-resolution of the 
flow at the tip of the free-surface on the 
expansion plane, when the tangent of the 
contact angle is larger than the aspect ratio 
of the grid cells. The results presented in 
Fig. 4 corresponds to the averaged swelling 
ratio, far away from the die exit. 
 

 
 
Figure 3. Fields of the conformation tensor 
components at the die exit, for 2Wi =  and 

1 9β =  (calculated on the fine mesh). 
 

 
 

Figure 4. Extrudate swell of the Oldroyd-B 
liquid as a function of Wi  (with 1 9β = ).  

 
Deviations between the different 

numerical results plotted in Fig. 4 are 
noticeable, for 2.5Wi ≥ ; however, for the 
low Wi  numbers, the numerical solutions 
are in good agreements. Crochet and 
Keunings13 implemented a Lagrangian 
finite-element scheme with a deforming 
mesh to calculate the steady-state solution of 
the extrudate swelling problem. Russo and 
Phillips14 used the spectral element method 
and the arbitrary Lagrangian Eulerian 
technique. Tomé et al.15 solved the 
extrudate swelling with a Eulerian transient 
free-surface flow solver based on the 
marker-and-cell method, which was 
specially developed for non-Newtonian 
fluids. The results of Habla et al.16 were 
obtained with an extension of the open-
source software OpenFOAM®, where the 
volume-of-fluid method is used to model the 
free-surface flows as two-phase flows. The 
numerical results are also compared with the 
approximated analytical solution of 
Tanner17: 
 

1 42

0.12 1
3
wSSr

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
  (15) 
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where 1 2wS N Wiτ β= =  is the recoverable 
shear at the walls of die, and the term 0.12  
correspond to the swelling of a Newtonian 
fluid in a creeping flow. At low Wi , the 
analytical and numerical solutions are in 
good agreement. However, the assumptions 
in Tanner’s theory are only valid for low 
values of Wi . This explains the divergence 
between Tanner’s analytical solution and the 
numerical results, when 2Wi ≥ . 
 
Fused filament fabrication 

We present a simplified model of 
extrusion-based 3D-printing that focuses on 
the flow at the exit of the printing nozzle. 
The numerical model consists in a two-
dimensional channel (representing the 
nozzle) that faces a moving surface 
(representing the substrate). The geometry is 
characterized by the diameter d  of the 
nozzle and the gap g  between the printing 
head and the moving surface. An inlet 
boundary condition with a fully-developed 
creeping flow profile is applied within the 
channel. The moving surface is assigned a 
tangential velocity V . The velocity of the 
moving surface is normalized by the average 
velocity 0U  of the fluid inside the nozzle. 
The shape of the two-dimensional printed 
filament exiting the nozzle has been 
simulated, for different values of the gap 
and the velocities of the moving table; see 
the snapshots of the results in Fig. 5. In 
these numerical simulations, the printed 
material was modelled as a Newtonian fluid. 
Within this simplified two-dimensional 
model, the thickness δ  of the printed 
filament is simply determined by the mass 
conservation, independently of the rheology 
of the fluid. The throughput Vδ ×  of the 
printed filament must equal the influx 

0d U×  of the inlet boundary of the nozzle. 
Therefore, we have the following relation: 

 
0dU

V
δ =     (16) 

 
 

Figure 5. Streamlines and normalized 
velocity fields at the exit of the printing 

nozzle, for various processing parameters: 
(A) 0.8g d = , 0 1.0V U = ; (B) 0.8g d = , 

0 2.5V U = ; (C) 1.6g d = , 0 2.0V U = . 
 

As expected, the numerical simulations 
of the Newtonian fluid predict the correct 
filament’s thickness; see the results plotted 
in Fig. 6. Nevertheless, if a prescribed force 
was applied at the inlet boundary, instead of 
the prescribed velocity, then the average 
velocity 0U  would be an unknown of the 
model that depends on the rheology of the 
fluid. In that case, an analytical solution of 
the filament’s thickness could be derived on 
the same line as Jabbari et al.18, who 
predicted the thickness of a shear-thinning 
slurry in tape casting. The analytical 
solutions of Cruz et al.19 may also be 
useful, in case of a viscoelastic liquid. 
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Figure 6. Analytical and numerical 
predictions of the filament’s thickness as a 

function of the velocity of the moving table, 
within the simplified two-dimensional 

model. 
 
CONCLUSION 

An in-house non-Newtonian free-surface 
flow solver, based on the volume-of-fluid 
method and the streamfunction/log-
conformation formulation, has been 
developed for this study. The planar 
extrudate swelling of the power-law and the 
Oldroyd-B fluids have been calculated for 
different values of the power-index and the 
Weissenberg number, respectively. Our 
predictions are in relatively good agreement 
with other results available in the literature. 

A simplified two-dimensional model of 
the fused filament fabrication was also 
presented. This model provides details of 
the flow in the gap between the printing 
head and the substrate. However, due to the 
prescribed influx boundary condition, the 
thickness of the printed filament solely 
depends on the velocity of the moving table, 
by virtue of mass conservation. Hence, a 
different boundary condition (for instance a 
prescribed pressure) must be applied at the 
inlet boundary, in order to investigate the 
effect of the rheology on the filament’s 
thickness. Finally, further studies should 
also consider the non-isothermal effects of 
the molten material. 
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