
 

ABSTRACT 
Numerical simulations with the so-called 

pom-pom differential constitutive model are 
compared to experimental data obtained 
with the filament stretching rheometer 
(FSR) for branched polystyrene polymer 
melts having narrow molecular weight 
distributions (MWDs). 

 
INTRODUCTION 

The observation of an overshoot in the 
transient stress-growth function measured in 
uniaxial extension of LDPE polymer melts 
was originally reported by Raible et al.2. 
Wagner et al.3 applied a KBK-Z type 
integral model to demonstrate qualitative 
agreement by an appropriate choice of 
damping function. A steady state viscosity 
was predicted but not measured due to 
limitations in the original Meissner 
extensional rheometer1. The advent of the 
Filament Stretching Rheometer (FSR) for 
melts7 made it possible to maintain an 
extensional flow sufficiently long to obtain a 
steady state viscosity. The original stress 
overshoot observation in LDPE was then 
confirmed by Rasmussen et al.8. Based on 
some appealing molecular ideas introduced 
by McLeish and co-workers4,6 the so-called 
pom-pom model was used later to describe 
qualitatively the overshoot phenomena in 
Hoyle et al.10. In the present work we apply 
similar techniques to describe the stress 
overshoot observations made by Nielsen et 
al.9 for branched polystyrene (PS) polymers.  

MULTIMODE POM-POM MODEL 
      Inkson et al.5 proposed an expression for 
the stress tensor of a multimode pom-pom 
model. Here, we use the later revised model 
by Hoyle et al.10. The stress is defined by 
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where, n is the total number of modes, and 
&%, '% and /% represent the modulus, the 
evolution of the back-bone stretch and the 
evolution of orientation for each mode i. -% 
and '% are expressed in the Eqs. (2) and (3) 
respectively. 
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is the orientation tensor. The tensor k is the 
transpose of the velocity gradient tensor, @% 
and  @P,% are the relaxation times for 
backbone and stretch while H% =

(

(Q2RM)
, 

where S% is the number of branches in each 
mode. The relaxation rate M

N∗
 was introduced 

by Hoyle et al.10. They assumed that the 
additional relaxation mechanism may occur 
due to the advection of flow which should 
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be proportional to the extension rate along 
the tube segment. The additional relaxation 
time can be expressed as 
 
M

N∗
= (T: TL)U|-: ;|           (5) 

 
The parameters WX and Y are non-linear 
parameters that determines the overshoot 
behaviour. 

 
RESULTS 
     In Fig. 1 we compare experimental data9 
with numerical simulations using the above 
model for a particular set of parameters. 

 

Figure 1. Experimental data from Nielsen et 
al.9 and simulations using the Pom-Pom 
model with a specific set of parameters. 
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