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ABSTRACT
In this paper a novel method is proposed,
where a constitutive equation for the viscoelas-
tic stress is solved in a Lagrangian frame of ref-
erence, and the full stress tensor is interpolated
to the Eulerian fluid grid. The method is val-
idated for a 2D flow past a confined cylinder
and used to simulate the 3D multiphase flow of
adhesive application.

INTRODUCTION
In industry the demands on environmentally
friendly products and processes increase which
in turn increase the focus on lightweight com-
posite materials. Such materials often cannot
be welded, and the use of adhesives is there-
fore an alternative joining method. This re-
quires new production processes for which a
thorough understanding is needed in order to
optimize the productivity and ensure sufficient
strength and quality of the joints. A key part
in understanding the processes is the ability to
simulate the flow of adhesive materials, which
often have complex rheology and may be both
viscoelastic and thixotropic. It is therefore not
sufficient to describe its rheology with purely
shear thinning models, e.g. the Carreau fluid
model, since such models lack the ability to de-
scribe storage of energy and transient stress re-
laxation.

Viscoelastic fluid flows have been subject to
research for quite some time, since many appli-
cations depend on their complex nature. Exam-
ples of linear models of viscoelasticity are the
Upper-Covected Maxwell (UCM) model and
the Oldroyd-B model.4 Although such mod-
els are used to simulate viscoelastic flows in
the literature, see for example,7, 9, 10, 14 a clear

disadvantage is that the normal stresses may
grow unbounded. A variety of more physi-
cal non-linear constitutive models exists. One
example is the Giesekus model,4 which is the
UCM model with an additional quadratic term
that prevents normal stresses from growing too
large. The FENE (Finitely Extensible Non-
linear Elasticity) models,6 treat the polymer
chains as non-linear dumbbells, i.e. two beads
connected by a non-linear spring. The springs
have a finite extensibility-limit such that the
spring constant grows large when the limit is
approached. The PTT model3 was proposed
in 1977 and has been widely used for simulat-
ing viscoelastic flows since. Instead of viewing
polymers as dumbbells, the PTT model is in-
stead derived from network theory by treating
the material as a network of entangled poly-
mers. For examples of applications see .10, 15, 18

A problem that can occur in simulations
of viscoelastic flows is numerical instabilities
arising even for moderate Weissenberg num-
bers. This is known as the High Weissenberg
Number Problem (HWNP).8 A solution to this
problem was proposed by Fattal and Kupfer-
man,11, 12 in which the constitutive equation is
transformed into an equation for the logarithm
of the conformation tensor. This transformation
results in additive contribution to the rate of
change, rather than multiplicative, and reduces
the high stiffness of the constitutive equation.

IPS IBOFlow1 is an in-house incompress-
ible flow solver developed at the Fraunhofer-
Chalmers Research Centre for Industrial Math-
ematics in Gothenburg, Sweden. It includes a
conjugated heat transfer solver20 and can sim-
ulate two phase flows with the Volume of Flu-
ids (VOF) method, of which the latter has re-
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cently been employed to simulate the laydown
of shear thinning materials, e.g. for seam seal-
ing application17, 21 and adhesive laydown.22

In this paper the aim is to further develop
the adhesive laydown simulations with an ad-
vanced viscoelastic rheology model, as this is
necessary to correctly predict the adhesive flow.
A novel method is used in which the viscoelas-
tic stress tensor is obtained from solving the
PTT constitutive equation on a Lagrangian dis-
cretization consisting of massless particles be-
ing convected by the fluid. By interpolating the
stress tensor to the fluid grid it is then taken into
account explicitly in the momentum equation.
The model is validated with experimental data
for the flow past a confined cylinder and then
used in a two phase flow process simulation of
adhesive application.

EQUATIONS
The incompressible viscoelastic fluid flow is
governed by the momentum and continuity
equations,
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where r is the fluid density, ui is the velocity, p
is the total pressure and gi is the gravity. Here,
si j denotes the extra stress tensor,

si j = 2µSi j + ti j, (3)

with µ being the viscosity of the solvent, i.e. of
the Newtonian fluid surrounding the viscoelas-
tic polymers, and Si j is the strain rate tensor and
ti j is the viscoelastic (polymeric) stress tensor.

In general, the material can have a relax-
ation spectrum, where the viscoelastic stress
tensor is the sum of the modal viscoelastic
stress tensors t(k)

i j ,3

ti j = Â
k

t(k)
i j . (4)

The viscoelastic stresses can also be described
in terms of the conformation tensor, ci j, a sym-
metric and positive definite tensor related to the

microstructural state of the material,19

ci j =
l
hp

�
ti j �di j

�
, (5)

where l is the relaxation time, hp is the
polymeric viscosity contribution and di j is the
unit tensor. The evolution of the viscoelas-
tic stresses is described with a constitutive
model. In this work the Phan-Thien-Tanner
(PTT) model is used, which reads, in terms of
the conformation tensor,19

l
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c i j is the upper-convected derivative
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with the material time derivative,
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Y is a relaxation function,

Y = 1+ e(ckk �dkk) = 1+ e(ckk �3), (9)

where e is a material constant related to the ex-
tensibility of the polymer network. When mul-
tiple relaxation modes are used, one constitu-
tive equation is solved for each mode. Equa-
tion (9) also exists in an exponential form, but
in this work only the linear form is used, be-
cause of its simplicity and since this is a com-
mon choice in literature. To prevent instabili-
ties at high Weissenberg numbers, Equation (6)
is transformed into an equation for the loga-
rithm of the conformation tensor, F = logc,

DF
Dt

� (WF�FW)�2B =
Y
l

�
e�F � I

�
. (10)

The tensor B is a traceless and symmetric
volume-preserving deformation in the princi-
pal axis of c and W is a pure rotation. This is
commonly known as the log-conformation rep-
resentation. For details on this transformation
the reader is referred to.11, 12
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NUMERICAL METHOD
The in-house flow solver IPS IBOFlow is used
to simulate the viscoelastic fluid flow. It is
an incompressible flow solver which uses a
Cartesian octree grid that is automatically gen-
erated and adaptively refined. All boundary
conditions on internal objects are imposed us-
ing the mirroring immersed boundary tech-
nique.13, 16 This makes the grid generation
automatic, which in turn minimizes the pre-
processing time. Another key advantage is that
moving objects are efficiently handled. The
Volume of Fluids (VOF) method with the CI-
CSAM convective scheme is used to simulate
two phase fluid-fluid flows.

Equation (10) is solved on a Lagrangian
discretization which is being convected by the
fluid. In each Lagrangian fluid element a lo-
cal ODE system describes the evolution of vis-
coelastic stresses and convection of the ele-
ment,


ẋ(t)
Ḟ(t)

�
=


u(x, t)

F(F(t),x(t), t)

�
. (11)

Here x(t) is the position of the fluid element at
time t, u(x, t) is the local fluid velocity at time
t and F denotes the right-hand side of Equa-
tion (10). The quantities in the right hand side
of Equation (11) that are stored in the Eulerian
fluid grid are obtained through interpolation to
the position x. The system (11) is solved with
the Sundials ODE solver library, Cvode,2 after
which the full viscoelastic stress tensor is in-
terpolated to the cell centers of the fluid grid.
The octree discretization of the fluid grid is
then used to calculate its divergence which is
included in the momentum equation (1) in the
explicit part of the stress tensor, si j. Special
care is put into keeping the Lagrangian fluid
elements evenly distributed in the viscoelastic
domain by adding and redistributing them be-
tween simulation time steps if needed.

For the case of two phase flows, the Volume
of Fluids (VOF) method is used. It is thus suf-
ficient for the Lagrangian fluid elements only
to exist in the viscoelastic phase. This makes
the method highly suitable, in terms of compu-
tational efficiency, for multiphase flows where

only a small part of the fluid domain is occu-
pied by a viscoelastic phase.

RESULTS
The proposed method is validated by simulat-
ing the two-dimensional viscoelastic flow of a
polyisobutylene solution past a confined cylin-
der. A sketch of the flow geometry is shown
in Figure 1. The radius of the cylinder, R, is
0.002 m. At the left boundary an inlet velocity
U = 0.0424m/s is prescribed and at the right
boundary an outlet is placed. The remaining
boundaries are treated as walls. The fluid en-
ters at the inlet with all viscoelastic stresses set
to zero. It is therefore ensured that the length of
the channel is sufficient for the flow to develop
upstream of the cylinder and again downstream
of the cylinder before exiting through the out-
let. A four-mode PTT model is used to describe
the viscoelastic properties of the polyisobuty-
lene solution. The parameters in the respective
viscoelastic modes are listed in Table 1. To esti-
mate the Deborah number of the flow the aver-
age relaxation time is calculated by weighting
the modal relaxation times with the respective
modal polymeric viscosities, which for the pa-
rameters used results in De ⇡ 0.93, see Baai-
jens et al5 for more details. A grid size of
Dx = Dy = 4R/60 is used, and simulations with
even higher resolution showed that the solution
is grid convergent.

In Figure 2 the streamwise velocity and the
first normal stress difference, N1 = txx �tyy, are

4R 2R

Figure 1. Symmetrically confined cylinder
geometry.

Mode hp[Pas] l [s] e
1 0.443 0.00430 0.39
2 0.440 0.0370 0.39
3 0.0929 0.203 0.39
4 0.00170 3.00 0.39

Table 1. Parameters used in the PTT-model for
the polyisobutylene solution.
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shown along the channel centerline, whereas in
Figure 3 they are shown across the channel at
different locations. In both figures the simula-
tion results are compared to experimental data
obtained by Baaijens and colleagues.5 The ve-
locities have been normalized with the inlet ve-
locity and the normal stress differences with the
stress t0 = 62.179Pa, in the same way as for
the experimental data. An excellent agreement
with the experiments is found for the velocity.
The first normal stress difference also shows
very good agreement throughout the flow, with
a slight exception where it reaches its maxi-
mum at the stagnation point in the channel cen-
terline just downstream of the cylinder. This is
likely due to an underestimation of the strain
rate in the interpolation to the Lagrangian fluid
elements.

A flow where the cylinder is displaced one
radius length in the vertical direction is also
simulated. The inlet velocity is 0.0868 m/s,
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Figure 2. Streamwise velocity (top) and first
normal stress difference (bottom) along the

channel centerline for flow past the
symmetrically confined cylinder.

which corresponds to a Deborah number of
1.87. Again, the results are plotted and com-
pared to experimental data obtained by Baai-
jens and colleagues,5 along the channel center-
line in Figure 4 and across the channel in Fig-
ure 5. Here the normal stress difference is nor-
malized with the stress t0 = 127.291Pa. For
this flow an excellent agreement between sim-
ulation and experiments is found, both for the
streamwise velocity and the first normal stress
difference.

In summary, the results from the simulation
of the flow past the confined cylinders show
very good agreement with experimental data.
This demonstrates that the simulation method
is very promising in its ability to properly de-
scribe the physical characteristics of the vis-
coelastic flow.

Application of a highly viscoelastic adhe-
sive is also simulated with the current simula-
tion method. A single-mode PTT model is used
and the two phase flow of adhesive and air is
treated using the VOF method. The adhesive
is injected into the fluid domain with velocity
0.48 m/s relative to the nozzle, which has diam-
eter 2 mm and follows a linear path moving at
150 mm/s at constant distance 3.5 mm from the
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Figure 3. Streamwise velocity (top) and first
normal stress difference (bottom) across the

channel at different locations for flow past the
symmetrically confined cylinder.
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Figure 4. Streamwise velocity (top) and first
normal stress difference (bottom) along the

channel centerline for flow past the
asymmetrically confined cylinder.
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Figure 5. Streamwise velocity (top) and first
normal stress difference (bottom) across the

channel at different locations for flow past the
asymmetrically confined cylinder.

bottom wall. The Reynolds number based on
nozzle radius and injection velocity is 0.48 m/s
and the Deborah number is 19.

The base grid consists of cubes with the side
Dx = 1cm and in the simulations the grid is
adaptively refined near the VOF-interface 5 and
6 times, respectively. This corresponds to finest
cells being of size 0.32 mm and 0.16 mm, re-
spectively.

In Figure 6 a snapshot from the finest sim-
ulation is shown. The Lagrangian grid is vi-
sualized as particles showing viscoelastic shear
stress, and the Eulerian octree grid is shown in
a cross-section plane. The Lagrangian fluid el-
ements are distributed in such a way that there
are always at least two fluid elements per fluid
cell. Simulations with higher resolution show
that the obtained solution is grid convergent.

To validate the simulations, a 3D-scan of a
real adhesive bead applied by a robot-carried
dispenser is used. The scanned bead is shown
in Figure 7, where the two measurement po-
sitions used for cross section comparison are
marked. In Figure 8 the simulated beads are
compared in detail in the cross sections defined
in Figure 7. Both simulations produce very
good predictions of the height and width of the
scanned bead. In addition, the finer simulation
clearly predicts the convex shape of the bead
near the three-phase contact between the air,
the adhesive and the solid at the bottom wall. It
should also be emphasized that surface tension
has not been taken into account in these simu-

Figure 6. Viscoelastic shear stress in
Lagrangian fluid elements.
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lations, and the effect is thus fully contributed
to viscoelasticity.

CONCLUSIONS
A novel method for simulation of viscoelastic
flows was used to simulate the 2D flow past a
confined cylinder and the 3D multiphase flow
of adhesive application. In both cases the PTT
constitutive model in the log-conformation rep-
resentation was used to describe the evolution
of the viscoelastic stresses. The results for the
confined cylinder show that the method indeed
predicts the characteristics of the viscoelastic

Figure 7. Scanned adhesive bead showing the
two cross sections used for validation of the

simulated beads.
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Figure 8. Cross section comparison at
measurement position 1 (top) and 2 (bottom)

between the bead simulated with 5 refinements
(�), 6 refinements (2) and the scanned bead

(•).

flow both for a symmetrically and an asymmet-
rically positioned cylinder. Further, the adhe-
sive laydown simulations produced beads that
compared well with the scanned adhesive bead,
thus demonstrating that the method at hand also
is well capable of predicting the viscoelastic
properties in two phase flow applications.

The results are very promising and a step to-
wards accurate and efficient CFD simulations
of industrial applications involving glues and
adhesives, where the viscoelastic properties of
the material are of great importance. A very
important property of the current method is
that the viscoelastic constitutive equation only
needs to be discretized in the part of the do-
main occupied by viscoelastic material. For
a two phase flow with only one viscoelastic
phase, the computational effort is thus signif-
icantly reduced in comparison to a finite vol-
ume discretization for the 6 tensor components
in the whole fluid domain. This, and the good
resemblance of the experiments, show that the
current method is highly suitable for such ap-
plications.
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