
 

LAOS is a convenient tool to measure the 
nonlinear viscoelastic behaviour of viscoe-
lastic materials. Various viscoelastic models 
have been studied to interpret or predict 
nonlinear viscoelastic behaviours under 
LAOS. Nonlinear viscoelastic models con-
sist of linear and nonlinear viscoelastic pa-
rameters. Linear viscoelastic parameters are 
able to be determined by use of several al-
gorithms which have been suggested by 
many researchers. However, there is no effi-
cient way to determine the nonlinear param-
eter for LAOS data. Previous researchers 
determined the nonlinear parameter relying 
on the other viscoelastic tests such as steady 
shear test. However, it was found that de-
termined parameters cannot provide qualita-
tive predictions for LAOS data1,2. Dynamic 
regression is suggested by Calin et al.3 to 
determine the parameter from the LAOS 
data, but it demands a lot of numerical 
computations and experimental data.  

It is obvious that the analytical solutions 
of viscoelastic models help to determine 
nonlinear viscoelastic parameters for LAOS 
flow as well as understand the nonlinear 
behaviour of the materials. Analytical solu-
tions for nonlinear viscoelastic models have 
been studied by use of power series expan-
sion or asymptotic solutions4,5. However, 
there exists inevitable limitation comes from 
radius of convergence. Consequently, the 
solutions are valid for restricted region of 
oscillatory amplitudes.  

Various nonlinear viscoelastic models 
have been studied to investigate the nonlin-
ear behaviour of viscoelastic materials. The 
Giesekus and the PTT models are popularly 

used to elucidate the nonlinear flow under 
LAOS. The constitutive equations of the 
Giesekus model can be written in terms of 
extra stress T  as below:  
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where ∇  means upper convected deriva-
tives and α  is the nonlinear parameter the 
model. G  is modulus and D  is deformation 
rate tensor. It is known that α  of Giesekus 
model is a constant between 0 and 1. The 
extra stress of PTT model can be written as  
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It is known that α  of PTT model is order of 

210 −  for solution system and 110 −  for pol-
ymer melt system6. Bae and Cho7 deter-
mined α  of Giesekus and PTT models as 
0.54 and 0.14 for PEO aqueous solution 
based on the semianalytical equations of 
LAOS.  

Cho8 adopted the perturbation method to 
calculate analytical solutions of the 
non-separable viscoelastic models. The per-
turbation method is applied to calculate the 
analytical solutions of the Giesekus and the 
PTT models. It is remarkable that it opens a 
new way to calculate the analytical solution 
of not only shear stress but also normal 
stress for LAOS flow.  

When Gα≡ε = 0, the solutions of the 
Giesekus and the PTT models 0T  are equiv-
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ABSTRACT
A high sensitivity system for capillary
rheometry capable of simultaneously de-
tecting the onset and propagation of insta-
bilities and the first normal stress differ-
ence during polymer melt extrusion flows
is here presented. The main goals of the
study are to analyse the nonlinear dynam-
ics of extrusion instabilities and to deter-
mine the first normal stress difference in
the presence of an induced streamline cur-
vature via the so-called ’hole effect’. An
overview of the system, general analysis
principles, preliminary results and overall
framework are herein discussed.

INTRODUCTION
Capillary rheometry is the preferred
rheological characterisation method for
pressure-driven processing applications,
e.g. extrusion, injection moulding. The
main reason is that capillary rheometry is
the only method of probing material rheo-
logical properties in processing-like condi-
tions, i.e. high shear rate, nonlinear vis-
coelastic regime, albeit in a controlled
environment and using a comparatively
small amount of material.1 Thus, it is
of paramount importance to develop new
techniques to enhance capillary rheome-
ters for a more comprehensive probing of
material properties. Extrusion alone ac-
counts for the processing of approximately
35% of the worldwide production of plas-
tics, currently 280⇥ 106 tons (Plastics Eu-
rope, 2014). This makes it the most im-
portant single polymer processing opera-

tion for the industry and can be found in
a variety of forms in many manufacturing
operations. Extrusion throughput is lim-
ited by the onset of instabilities, i.e. prod-
uct defects. Comprehensive reviews on the
subject of polymer melt extrusion insta-
bilities can be found elsewhere.4,6 A re-
cent method proposed for the detection
and analysis of these instabilities is that of
a high sensitivity in-situ mechanical pres-
sure instability detection system for cap-
illary rheometry.8,10 The system consists
of high sensitivity piezoelectric transducers
placed along the extrusion slit die. In this
way all instability types detectable, thus
opening new means of scientific inquiry. As
a result, new insights into the nonlinear dy-
namics of the flow have been provided.9,14

Moreover, the possibility of investigating
the reconstructed nonlinear dynamics was
considered, whereby a reconstructed phase
space is an embedding of the original phase
space.2,14 It was shown that a positive Lya-
punov exponent was detected for the pri-
mary and secondary instabilities in lin-
ear and linear low density polyethylenes,
LDPE and LLDPE,.14 Furthermore, it was
determined that Lyapunov exponents are
sensitive to the changes in flow regime and
behave qualitatively different for the iden-
tified transition sequences.14 It was also
shown that it is possible to transfer the
high sensitivity instability detection sys-
tem to lab-sized extruders for inline ad-
vanced processing control and quality con-
trol systems.13

A very recent possibility considered
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alent to that of the upper convected Maxwell 
(UCM) model.  
Because G is sufficiently large for polymer 
melts or concentrated polymer solutions, 0T  
can be remedied by the perturbation method 
with parameter ε .  
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Substitution of lower order solutions pro-
vides the first and the second solutions of 
the Giesekus model as  
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The constitutive equations of the PTT model 
provide the analytical solutions as below:  
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The perturbation approximation can be 

easily calculated by use of integrating 
transform8. It is remarkable that this ap-
proach facilitates systematic calculation for 
analytical solutions of normal stress differ-
ences as well as shear stress under LAOS.  
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