
 

ABSTRACT 
Many fluids found in our daily lives and 

in industry are time-dependent, such as daily 
care products, coatings, paints, etc. These 
fluids response varies with time even for a 
constant imposed load. In the current work, 
a general model to predict the behaviour of 
time-dependent fluids is proposed. This 
easy-to-understand and -to-fit model can be 
applied to either thixotropic or 
anti-thixotropic fluids and is a function of 
both load (either stress or shear rate) and 
time-dependent properties. The time-
dependent materials dealt in this work are 
those in which an equilibrium is reached 
within an observable time after a constant 
load (stress or shear rate) is applied. This 
model is based on a kinetic equation derived 
from the equilibrium condition. A 
viscoelastic constitutive equation based on 
the Jeffrey’s model is used in step-up 
change simulations to exemplify the model 
potential. While the common stress 
overshoot is obtained in shear rate 
controlled experiment, the avalanche effect 
found in yield stress materials is noted in 
creep tests.  

 
INTRODUCTION 

Many fluids found in our daily lives and 
in industry are time-dependent, such as daily 
care products, coatings, paints, drilling 
muds, starches, different kind of gels, 
suspensions, polymer solutions, polymer 
melts, ketchup, mayonnaise, canned baby 
foods, grease, melts, etc. These fluids 
response varies with time even for a 

constant imposed shear rate or stress. The 
knowledge of the flow behaviour of these 
kinds of fluids is quite important either for 
industrial applications (eg. What is the 
pumping pressure to move a fluid from 
place to place?) or for our everyday life use 
(eg. How easy is it to push toothpastes from 
customer tubes?).  

Some of these fluids are classified as 
viscoelastic because elasticity causes time-
dependency1 and some others as thixotropic 
or anti-thixotropic (rheopetic) since the 
change on the material structure produces 
the time response. There are still some more 
complex materials that encompass 
simultaneously viscoelasticity and change 
on the material structure2. Larson3 called the 
purely thixotropic materials as ideal 
thixotropic once they have instantaneous 
stress relaxation upon cessation of flow and 
the materials that include both 
viscoelasticity and thixotropy as nonideal 
thixotropic. 

Purely viscoelastic materials are those in 
which their properties, such as viscosity 
and/or elastic modulus, are constant (linear 
viscoelasticity) or load dependent (non-
linear viscoelasticity) but are not time-
dependent, so that the material properties 
vary immediately after any load change. If 
the structure of this kind of material change 
with the imposed load, the time for breaking 
or building up the structure is much smaller 
than the viscoelastic relaxation or 
retardation times. On the other hand, the 
structure dependent materials, either ideal 
thixotropic (viscoplastic-thixotropic) or 
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nonideal thixotropic (viscoelastic-
thixotropic), are those in which their 
properties are both load and time-dependent, 
so that the properties do not change 
immediately after load variations. Notably, 
the non-linear viscoelastic materials are a 
particular case of viscoelastic-thixotropic 
materials.  

How can thus a viscoelastic fluid be 
distinguished from either a viscoplastic-
thixotropic or a viscoelastic-thixotropic 
material if their responses are all time-
dependent? A controlled shear rate test can 
be used to differentiate them. Figure 1 
illustrates the stress response of purely 
viscous, viscoelastic, visco-thixotropic 
(ideal thixotropic) and viscoelastic-
thixotropic materials to a step-up change of 
shear rate. As shown, the stress response: 
for purely viscous fluids rises immediately 
to the equilibrium; for viscoelastic fluids 
increases gradually to the steady state; for 
visco-thixotropic fluids reaches immediately 
a large value decreasing steadily to the 
equilibrium and; for viscoelastic-thixotropic 
fluids gradually increases exceeding the 
equilibrium and then returns to the final 
value. Two time constants play a role on the 
behaviour of the viscoelastic-thixotropic 
material: the relaxation time, λ, that is 
related to viscoelasticity and the structure 
time constant, teq, that depends on how fast 
the structure of the material changes. The 
other three materials are particular cases of 
the viscoelastic-thixotropic material, 
depending on the magnitude of these two 
time constants in comparison to the 
experiment time scale, texp, that in the 
current case can be characterized as the 
inverse of the experiment shear rate. For a 
very slow experiment (texp >> λ ~ teq), the 
material appears to be purely viscous. While 
a viscoelastic material is the one with a very 
small structure time constant and large 
relaxation time, the visco-thixotropic has a 
tiny relaxation time and large structure time 
constant in comparison to the experiment 
time scale. For viscoelastic-thixotropic 

materials, the experiment time scale is on 
the same order of magnitude of the two time 
constants. Table 1 shows the materials 
classification according to these two time 
constants. 

 

 
Figure 1. Shear stress response of different 
materials to a step-up change of shear rate. 

 
Table 1 – Classification of materials 
according to relaxation and structure time 
constants. 

Time constants Type of material 
texp >> λ ~ teq Purely viscous 
teq << texp ≤ λ Viscoelastic 
λ << texp ≤ teq Visco-thixotropic 
texp ≤ λ ~ teq Viscoelastic-thixotropic 

 
Several works have developed 

constitutive equations to predict the 
behaviour of thixotropic materials2,4,5. Most 
of them are based on a structure parameter 
that describes the level of material structure 
and use a kinetic equation to predict the 
change of the material structure with time6. 
Usually, the structure parameter varies from 
0 to 1, meaning the fluid is totally 
unstructured and completely structured, 
respectively. Some thixotropy models do not 
include elasticity7,8 and some others 
consider it in the material structure4,9,10. 
Despite the large amount of models 
available, a general model has not yet been 
able to describe appropriately the thixotropic 
or rheopetic behaviour of these materials.  

The kind of time-dependent materials 
dealt in this work are those in which an 
equilibrium is reached within an observable 
time after a constant load (stress or shear 
rate) is applied. Besides, the process is said 
to be completely reversible as only one 

Time

Shear
stress Purely viscous

Viscoelastic
Visco-thixotropic
Viscoelastic-thixotropic
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equilibrium condition is allowed for a 
constant load. Materials such as waxy crude 
oils in which the flow curve may depend on 
the shear and thermal history11–13 are not 
considered here. 

In this work, a general model for time-
dependent materials, either thixotropic or 
rheopetic, is proposed. This model, 
however, is not based on a structure 
parameter but rather, on time-dependent 
properties computed from a kinetic equation 
derived from the equilibrium condition. 
 
MATHEMATICAL MODEL 

A constitutive equation usually 
correlates the shear stress tensor to the 
material response and can generally be 
written as: 

 
τij = F1 !γij,!!γij, !τij,θ1,θ2 ,…,θn( )   (1) 

 
where ijτ  is the shear stress tensor that is a 
function of the shear rate, !γij , of the rate of 

the shear rate, !!γij , and of the shear stress 

rate, !τij , tensors. θ1, θ2 and θn are time 
dependent properties of the material, such 
as, viscosity, elastic modulus, etc. Those 
material properties can be dependent only 
on the load (shear stress or shear rate), for 
time-independent properties, or dependent 
on both load and time, for time-dependent 
properties. A general form of a time-
dependent property can be written as a 
function of the load and of time: 

 
θk = θk L, t( )    (2) 

 
where L is an invariant of the load - either 
shear stress, ijτ , or shear rate, !γij , tensors - 
and t is the time. For time-independent 
property fluids, a change on the load (shear 
rate for instance) causes an immediate 
change on the property that, of course, 
depends on the time scale of the change. 

If a constant load (shear rate or shear 
stress) is imposed to the material, its 
properties tend to the equilibrium. 
According to Eq. 2, the equilibrium 
properties can then be written as: 

 
θk,e L( ) = θk L, t→∞( )   (3) 

 
where θk,e is the equilibrium counterpart of 
θk that depends only on the load. 

Many have devised models for the time 
dependent properties based on a structure 
parameter4,5,7–10 that is derived from a 
kinetic equation. Differently from previous 
works, the difference between the 
equilibrium and the instantaneous value of a 
property is stablished as the driving force 
for a fluid property change. A rate equation 
for any material property, based on the 
product of a load function and on a function 
of the property unbalance from the 
equilibrium, is thus proposed: 

 
dθk (L, t)
dt

= F2 L( )F3 θk,e L( ) − θk L, t( )⎡⎣ ⎤⎦   (4) 

 
where F2(L) is a positive function of an 
invariant of an imposed load and F3 is a 
function of the property unbalance. As 
noted, the difference in brackets is the 
unbalance between the equilibrium value 
and the instantaneous value of θk, which is 
positive if the equilibrium value is larger 
than the instantaneous counterpart and 
negative if the opposite happens. If a 
constant load, L, is maintained for a long 
period (t→∞), the variation rate tends to 
zero, as θk approaches θk,e: 

 
dθk (L, t→∞)

dt
= 0   (5) 

 
Considering that the breakdown is 

usually faster than the buildup1, a possible 
function for F2 can be defined as: 
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F2 L( ) = 1+αLβ    (6) 
 

where α and β are fitting parameters. As 
noted, if the load is removed, the material 
builds up to the equilibrium at zero load 
condition, θk,e(L=0). This function also 
allows the material break-up to be load 
dependent. 

Many structure parameter models base 
the calculation on the equilibrium. Although 
this is equivalent to the Eq. 4, the approach 
proposed here is much easier to understand 
and perhaps to fit. It is also worth 
mentioning that the current model states that 
the driving force can be either the shear 
stress or the shear rate. 

In order to illustrate the model potential, 
a thixotropy model based on the Jeffrey’s 
equation is used as an example: 

 

τij + θ1 τ, t( )
dτij
dt

= ηv τ, t( ) !γij + θ2 τ, t( )
d!γij
dt

⎡

⎣
⎢

⎤

⎦
⎥   (7) 

 
where θ1 and θ2 are the time-dependent 
relaxation and retardation times given, 
respectively, by: 

 

θ1 τ, t( ) =
ηv τ, t( ) − η∞

G
  (8) 

 

θ2 τ, t( ) =
ηv τ, t( ) − η∞
ηv τ, t( )

η∞
G

  (9) 

 
where τ is the second invariant of ijτ , ηv is 
the instantaneous viscosity that depends on 
τ, η∞ is the completely unstructured state 
viscosity, and G is the shear modulus. The 
properties are assumed to be shear stress 
dependent rather than shear rate dependent, 
as suggested by Souza Mendes and 
Thompson4 and Larson3. In order to 
simplify the model, G and η∞ are assumed 
load and time-independent. Based on Eq. 4, 
a simple equation rate for the viscosity is 
proposed: 

 
dηv (τ, t)
dt

=
ηv,e τ( ) − ηv τ, t( )

teq
  (10) 

 
where teq is the material structure time 
constant. As noted in Eq. 4, F2 is assumed to 
be 1.0 and F3 as ( ) ( )[ ]v,e v eq, t / tη τ − η τ . 
According to Eq. 10, the instantaneous 
viscosity approaches exponentially the 
equilibrium viscosity for an applied constant 
shear stress. teq represents the time for the 
viscosity to reach exponentially 67% of its 
final value if a constant shear stress is 
applied to the material. 

The time response of the model depends 
on the magnitude of the experiment time 
scale, texp, in comparison to the material 
time constant, teq. The material properties 
are time-independent if texp is much larger 
than teq and thixotropic (time-dependent) if 
texp is much smaller than teq. 

The equilibrium viscosity of the fluid is 
based on the model proposed by Blackwell 
and Ewoldt14: 

 

ηv,e !γ( ) = η∞ +
η0
1+ a!γ

 (11) 

 
where η0 is the viscosity of the completely 
structured material, a is a positive parameter 
that controls the curve slope and !γ  is the 
second invariant of !γij . As noted, the 
equilibrium viscosity changes from η∞+η0 
(maximum) to η∞ (minimum) as the shear 
rates varies from 0 to ∞, respectively. As the 
current model requires the properties being 
shear stress dependent rather than shear rate 
dependent, Eq. 11 is rewritten as: 

 

ηv,e τ( ) = 12 η∞ + η0( ) − aη∞τ +{

aη∞τ − η∞ + η0( )⎡⎣ ⎤⎦
2
+ 4aη∞τ}

    (12) 
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which is the only root of the second order 
equation that provides a positive value for 
the viscosity. 

In order to evaluate the model, the above 
equations are written in the dimensionless 
form as: 

 

τ* + ηv
* −1( )dτ

*

dt
= ηv

* !γ* +
ηv
* −1
ηv
*

d!γ*

dt
⎛

⎝
⎜

⎞

⎠
⎟   (13) 

 

!ηv
* τ*, t*( ) =

ηv,e
* τ*( ) − ηv* τ*, t*( )

teq
*

  (14) 

 

ηv,e
* τ*( ) = 12 1+ η0

*( ) − a*τ* +{

a*τ* − 1+ η0
*( )⎡⎣ ⎤⎦

2
+ 4a*τ* }

  (15) 

 
where τ* = τ/(η∞ !γref ) , *

vη  = ηv/η∞, 
*
0η  = η0/η∞, t* = t(G/η∞), !γ*  = !γ / !γref , 
*
eqt  = teq(G/η∞) and a* = a !γref . Notably, the 

relaxation time η∞/G is used as a reference 
for the dimensionless time, so that *

eqt  is the 
ratio of the structured material time 
constant, teq and of η∞/G. If the structured 
material time constant tends to zero, the 
properties change immediately and 
consequently, a viscoelastic response is 
observed. As *

eqt  increases, the variation of 
the properties is not instantaneous, and the 
response is the one of a viscoelastic-
thixotropic fluid.  

It is worth mentioning that the proposed 
model is represented by only three 
dimensionless parameters, *

eqt , a* and *
0η .  

 
RESULTS AND DISCUSSION 

In order to demonstrate the model 
potential, this section presents results 
obtained from the solution of Eqs. 13, 14 
and 15 for shear rate and shear stress 
controlled tests. The initial condition for 
these flows is of a fully relaxed fluid, τ* = 0, 

at rest, !γ * = 0. Consequently, the initial 
viscosity is *

vη (t = 0) = *
0 1η + . All the 

simulations were performed with the 
following set of parameters: a* = 105 and
*
0η  = 106. 

 
Shear rate controlled test 

For these tests, a constant shear rate, !γf
* , 

is imposed to the material at t = 0. Figure 2 
presents the shear stress as a function of 
time for different imposed shear rates and 
*
eqt  = 1. 

 

 
Figure 2. Shear stress as a function of time 
for constant shear rates of 10-1, 1, 10, 102 

and 103. 
 
As shown by Souza Mendes and 

Thompson4, the initial shear stress is 
*
iτ  = !γf

* . After the shear rate is imposed 
(t > 0), there is a linear increase in the shear 
stress as a result of an elastic response. An 
overshoot is then noted, indicating a 
transition from an elastic dominant region to 
a viscous predominant region. After that, the 
material relaxes and the shear stress 
decreases to the equilibrium. The smaller the 
shear rates the smaller is the overshoot and 
the higher is the time to reach it, as the 
experiment time scale reduces with the shear 
rate increase. For a shear rate of 10-1, the 
overshoot is not observed, indicating that 
the material structure time constant is small 
in comparison to the experiment time scale 

t*

τ*

10-2 10-1 100 101 102 103 104
10-2

10-1

100

101
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104
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1
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and consequently showing only the material 
viscoelastic behaviour.  

 
Shear stress controlled test 

In this test, *
eqt  is set to 100 and a 

constant shear stress, *
fτ , is imposed at t = 0. 

Figure 3 presents the results of the shear rate 
as a function of time for different shear 
stresses. 

 

 
Figure 3. Shear rate as a function of time for 
constant shear stress of 10-1, 1, 10, 102, 103 

and 104. 
 
As shown by Souza Mendes and 

Thompson4, the initial shear rate is !γi
*  = *

fτ . 
After the shear stress is imposed, the initial 
shear rate reduces slightly and then 
decreases significantly. After that, the shear 
rate is maintained at very slow values or 
increases rapidly to a steady-state value. 
This fast increase is well documented in the 
literature4,15,16 and is known as avalanche 
effect. As noted for the lower shear stress 
imposed (10-1 and 1), there is no avalanche 
effect, because the equilibrium viscosity for 
the imposed stress is significantly high. 
Since the viscosity almost does not change 
under these conditions, it can be assumed 
that the material does not flow. 
 
CONCLUSIONS 

In this work, a general model to predict 
the behaviour of time-dependent materials 
was devised. The time-dependent properties 

are computed from a rate equation that is 
based on the equilibrium property condition. 

The Jeffrey’s model and an equilibrium 
viscosity equation proposed by Blackwell 
and Ewoldt14 were employed to show the 
model potential. The final model has only 
three dimensionless parameters, a number 
significantly smaller than that observed in 
literature4,7,9,10. 

The results for shear rate and shear stress 
controlled tests presented the key features of 
the model. In the constant shear rate test, the 
stress response showed a linear elastic 
increase and a stress overshoot which were 
expected for viscoelastic-thixotropic 
materials. As for the constant shear stress 
test, the avalanche effect was observed for 
high-imposed stresses and the material did 
not yield for low shear stresses.  

It can be concluded that the proposed 
model has shown the main features of time-
dependent materials as other more complex 
models4,9. 
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