
 

ABSTRACT 
The advection of the interface in the 

creeping flow of a two-phase liquid system 
is predicted using an in-house developed 
three-dimensional least squares finite 
element (LSFEM) computer code, which is 
based on the volume of fluid method (VOF) 
and applied locally in the interface area. 

Moreover, a criterion for an appropriate 
definition of the interface thickness is 
suggested, which is employed to evaluate 
the surface tension forces, using the 
derivative of the volume fraction on the 
Gaussian points of each element. 

Finally, the deformation of the second 
phase, which is assumed to be a drop, in the 
simple shear flow is satisfactorily compared 
with available data in the literature; and it is 
shown that even for the case that both 
phases have equal viscosities, the apparent 
viscosity of the dilute two-phase emulsion is 
affected by the surface tension and the 
second phase size. 

 
INTRODUCTION 

Moving boundary and evaluating the 
position of the interface is the concern of 
many flow problems [1], such as mixing and 
morphological development in two-phase 
flows. Therefore, many researches have 
devoted their attention to capture or track 
the interface using Eulerian, Lagrangian or 
mixed approaches [2]. Here we have 
employed the volume of fluid method 

(VOF), which captures the interface using 
Eulerian formulation [3].  

There exist at least three challenges for 
the evaluation of the interface in all of the 
Eulerian methods, including VOF: (i) a 
proper solver for the advection equation, (ii) 
a direct interface reconstruction method and, 
(iii) a precise method for the surface tension 
force calculation. Certainly, different 
methods are purposed to provide a better 
solution for the mentioned problems [4-8].  

In the current research we have adjusted 
a least square finite element method to have 
a stable solution for the interface 
displacement equation, which is totally 
governed by advection terms. Also, the first 
and the second derivatives of the volume 
fractions on the Gaussian points of each 
element are used to calculate the interface 
curvature and the surface tension force, as a 
result. 

Then, using the derivatives of the 
velocity on the walls, the apparent viscosity 
of the dilute two-phase emulsion is 
calculated and it is shown that the value of 
the apparent viscosity changes as the second 
phase changes; also its final value is a 
function of second phase size and surface 
tension. 

 
MATHEMATICS AND SOLUTION 

Here we direct our attention to the 
creeping flow of an incompressible 
Newtonian fluids, therefore the equations of 
motion can be stated as follows: 
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       (1)-a 

       (1)-b 

 
where  and  are Nabla and 
Laplace operators, respectively; and “ ” 
stands for the dot product.  and  are 
pressure and Newtonian viscosity in the 
flow domain, correspondingly. The vectors 

 and  denote 
location and velocity of any arbitrary point, 
for a three-dimensional flow field in the 
Cartesian coordinate. The term on the RHS 
of equation (1-a) is the contribution of the 
surface tension, in which the scalar value of 

 is the surface tension coefficient. The 
curvature of the interface and its normal are 
denoted by  and , respectively.  is 
Dirac’s distribution function.  

The advection of the interface can also 
be described by equation (2): 
 

 
                    (2) 

 
where  denotes time and the volume 
fraction of each arbitrary point is shown by 

, which will be defined later in equation 
(3). 

The equations of motion (equations 1-a 
and 1-b) can be solved using Galerkin finite 
element method [9], as described in [10 and 
11]. However, a least squares finite element 
method [12] is used to obtain a stabilized 
solution for equation (2), which is totally 
governed by the advection terms. It is worth 
to mention that the solution domain of the 
recent equation is considered to be the 
elements, which at least one of their nodes 
are closer to interface than interface 
thickness (Will be described later). We have 
employed cuboid elements to discretize the 
domain and tri-linear interpolation functions 
are used for pressure and volume fraction 
and tri-quadratic interpolation function for 
velocity components. 
Interface 

The volume fraction parameter 
determines the position of the interface as 
well as its curvature and normal direction. 
Therefore, a precise evaluation of the 
mentioned parameter is vital for a better 
prediction of the second phase deformation. 
In order to achieve this target, a new 
criterion for the interface thickness 
assumption and a new method for evaluating 
the second derivative of the volume fraction 
are suggested. 

In this research, we have proposed that 
the curvature and the normal direction, in 
each active element (element with the 
interface) to be calculated using the 
derivatives of the nodal values of the 
volume fraction on the Gaussian points of 
the  stencil around each active 
element. Therefore, it is expected that all of 
the involved nodes in the mentioned element 
to be inside the interface region. This 
condition can be fulfilled if the interface 
radius ( ), or half of the interface thickness, 
to be three times the greatest diagonal in the 
meshing system. Therefore, the nodal values 
of the volume fraction can be defined, as 
equation (3): 

 

 
 

 

where  is the minimum distance between 
each node and the interface. 
 
VERIFICATION 

In order to investigate the correctness of 
our method, a comparison has been made 
between our results and the available data in 
the literature [13 and 14], in a simple shear 
flow as shown in figure (1). 

 

(3) 
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Figure 1. An immiscible droplet with the 

radius of  in simple shear flow 
   

In Figure 1 the gap between the moving 
plates in the simple shear flow is denoted by 

 and  is the radius of the undeformed 
sphere-like droplet. The upper and lower 
plates move with the velocities of  and 

; respectively; therefore, the average 
shear rate is defined by . The ratio 
of the viscous to surface tension forces is 
also defined by Capillary number, as stated 
in equation (4): 
 

	
            (4) 

 is the viscosity of the main phase, which is 
equal to the second phase viscosity, as an 
assumption.  
In our first example, we have studied case 
(4) of figure (2) in [13]. Figure (2) illustrates 
the steady shape of a droplet with  
and , which comply perfectly 
with the experimental results. 
 

 
Figure 2. The steady shape of a droplet with 

 and , reproducing 
case (4) of figure (2) in [13]. 

 
This method can also predict the droplet 

breakup, as shown in figure (3).  
 

 
Figure 3. The steady shape of a droplet with 

 and , reproducing 
case (1) of figure (3) in [13]. 

 
VISCOSITY OF THE DILUTE EMULSION 

Here the effect of a single droplet 
deformation on the apparent viscosity of a 
two-phase flow is studied. In order to 
calculate the apparent viscosity of the dilute 
emulsion, the following correlation is used: 

 

 
 

                   (5) 

where  and  are the shear rate at walls 
and apparent viscosity, respectively. 
Figure (4), shows the trend of the viscosity 
changes before equilibrium for different 
values of Capillary numbers, when the 
diameter of the droplet if 0.7 of the gap. 
 

 
Figure 4. Trend of the viscosity changes by 

time (t) for Rdrop/H=0.7 
 

According to figure (4), it is observed 
that by decreasing of the Capillary number, 
the value of the equilibrium viscosity 
increases, which can be attributed to higher 
values of the surface tension forces. Also, it 
is shown that the viscosity experiences a 
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fluctuation before equilibrium for larger 
values of Capillary number. Similar 
behaviour has also been observed for the 
shape of droplet before the equilibrium [13 
and 14].  

By increasing the droplet size, the 
viscosity and its fluctuation will increase as 
well, as shown in figure (5): 

 
Figure 5. Trend of the viscosity changes by 

time (t) for Rdrop/H=0.9 
 
CONCLUSION 

A computer code has been developed to 
predict the flow field parameters and the 
interface advection using Galerkin finite 
element and least squares finite element 
methods, respectively. Moreover, a criterion 
for choosing the suitable interface thickness 
has been suggested, which is used to defined 
the nodal values of the volume fraction. 
Also, the surface tension forces in each 
active element have been calculated using 
the derivatives of the volume fraction at the 
Gaussian points around the element with 
interface. 

 It has been shown that this model can 
predict perfectly the second phase 
deformation at low and high values of the 
capillary number. Finally, the effect of the 
second phase deformation on the apparent 
viscosity of the dilute emulsion has been 
studied and it has been shown that 
increasing the surface tension as well as 
second phase size can give a rise to the 
apparent viscosity of the emulsion, even 
when two phases have similar viscosities. 
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