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ABSTRACT 
In this study isothermal and non- 

isothermal viscoelastic PTT fluid flow in a 
lid driven polar cavity is considered. The 
effects of elasticity and viscous heating on 
the flow  and stress fields are demonstrated 
and compared in terms of vortical structure, 
stress components and temperature 
distributions in the polar cavity. 

 
INTRODUCTION 

The purpose of this study is to analyse 
the viscoelastic and non-isothermal effects 
with viscous dissipation for two dimensional 
flow in a polar cavity. The flow is induced 
by the motion of the inner curved wall. The 
polar cavity geometry can be considered as a 
typical cross section of a single screw 
extruder1, and is suitable to illustrate the 
effect of curved geometry on an internal 
viscoelastic flow field. This geometry (with 
cavity angle of 1 radian and gap ratio of ½) 
is first used and described in a study by 
Fuchs and Tillmark2, where they obtained 
numerical simulation results for Newtonian 
case at considerably low Reynolds numbers. 
Wu et al.3 solved for polar cavity flow of a 
Newtonian fluid up to Reynolds number 
1000 and used this case as a validation tool 
for their new Lagrange interpolation 
method. Lei et al.4, Darbandi and 
Vakilipour5 and Kim6 used the same 
geometry as a test case to validate their 

numerical schemes. Krasnopolskaya1 used 
this geometry (with a cavity angle of π/2), to 
model mixing in a single screw extruder. 

The effects of viscous dissipation on 
Newtonian and non-Newtonian flow fields 
have been studied by many researchers, for 
similar geometries. Al-Mubaiyedh et al.7 
investigated the influence of viscous heating 
on the stability of Taylor-Couette flow for 
Newtonian fluids with thermally sensitive 
viscosity. Basing on the linear stability 
analysis, they showed that viscous heating 
leads to significant destabilization in Taylor 
Couette flow. Yeşilata8 investigated how to 
predict the material properties of 
viscoelastic fluids under viscous dissipation 
effects. He formulated the problem for the 
flow of an  Oldroyd B fluid between two 
rotating parallel plates. Yataghene et al.9 
analysed both experimentally and 
numerically the increase of temperature due 
to viscous dissipation for Newtonian and 
non-Newtonian power-law (shear thinning) 
fluids for the flow in a scraped surface heat 
exchanger. They remarked an increase in 
viscous heating as the rotor speed increases. 
However, they reported that the effect of 
viscous dissipation was not observed for the 
power-law fluid. They attributed this 
behaviour to the shear thinning character of 
the fluid which considerably reduces the 
apparent viscosity and therefore the viscous 
dissipation in the high shear rate zones near 
the blade. 
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In this study we investigate the non-
isothermal and viscoelastic flow of a Phan-
Thien-Tanner (PTT) fluid in a lid driven π/2 
angle polar cavity with a gap ratio h=4/7. As 
a general model Williams-Lendel-Ferry 
equation is used to describe the temperature 
dependence of the material parameters such 
as viscosity and relaxation time. 

The viscous dissipation effect on the 
flow field is shown and compared for 
Newtonian and viscoelastic cases. The 
results are presented in terms of streamlines, 
isotherms and centreline velocity 
components and temperature distributions. 

 
FORMULATION AND METHOD OF 
SOLUTION 

We consider the 2-D flow of a polymer 
solution in a polar cavity with cavity angle 
θp=π/2 and gap ratio (ratio of inner radius ri 
to outer radius ro) of h=4/7 (Fig. 1). The 
outer wall and the side walls are fixed, while 
the inner lid moves in θ direction with a 
predefined velocity distribution. The fluid is 
initially at rest and we specify no-slip 
boundary conditions at the walls. The θ 
component of the moving inner lid velocity  
is given by, 
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where t denotes the time. This new 
definition of the distributed lid velocity, 
inspired from a study by Fattal and 
Kupferman10, helps to prevent the 
singularities at cavity corners without 
causing any significant qualitative and 
quantitative change on the vortical structure 
compared to constant lid velocity case as 
shown in (Fig.2 (a) and (b)). The r 
component of the velocity vanishes at the 
walls. The outer wall is kept at constant high 
temperature To, while the moving inner lid is 
kept at constant low temperature Ti (To>Ti). 
The stationary side walls are insulated. 

Since this geometry is a better 
approximation in two dimensional space for 
the single screw extruders compared to the 
rectangular cavity, the thermal boundary 
conditions are determined according to this 
application12. 

 
 
 
 
 
 
 
 

Figure 1. Cavity Geometry 
 
 
 
 
 
 
 
 
 
 
 
 
(a)  
          (a)   (b) 
 
  Figure 2. Newtonian polar cavity flow 
(θp=π/2, h=1/2) at Re=60 (a) constant lid 

velocity case, Ψmin=-0.116336    
 (b) distributed lid velocity case, 

Ψmin=-0.1094 
 

The conservation equations for non-
isothermal, incompressible viscoelastic flow 
can be written in dimensionless form as, 
 

0=⋅∇ V            (2) 
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where V is the velocity vector, T is the 
viscoelastic extra-stress tensor, p is pressure 
T is temperature and D/Dt denotes the 
material derivative. The Reynolds number is 
defined as μρ /Re 0 irV= , where ρ is the 
fluid density, V0  is the characteristic 
velocity and μ is the total shear rate 
viscosity. In this study we used low 
(Re=0.3, in viscoelastic cases) to moderate 
(Re=60, in Newtonian cases) Reynolds 
numbers. The dimensionless parameter β is 
the ratio of the solvent viscosity ( sμ ) to the 
total zero-shear rate viscosity ( ps μμμ += , 
with pμ , the polymer viscosity) and has 
been fixed as β=0.45 in this study.  Péclet 
number is defined as krVCPe ip /0ρ= , 
where Cp is the heat capacity and k is the 
thermal conductivity, and has been chosen 
as Pe=500 and Pe=900. Brinkman number 
represents the ratio of viscous dissipation to 
heat conduction resulting from imposed 
temperature difference, which signifies self 
heating versus external heating, and is 

defined as
)( 0
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. In this study it 

is fixed to the value of Br=15. The 
dissipation term in the energy equation (4) is 
composed of two parts, namely, viscous 
dissipation and elastic dissipation. More 
precisely, α=0 is the pure elastic dissipation 
case and α=1 is the pure viscous dissipation 
case. The non-dimensional temperature is 

defined as 
io
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 where T~  is the 

dimensional temperature. Weissenberg 
number is defined as io rVWe /λ= , where λ 
is the relaxation time of the fluid.  

In this study the temperature difference 
(To-Ti) is considered at the order of 1°K, 
hence the fluid can be assumed 
incompressible7. The density and thermal 
conductivity are assumed independent of 
temperature field. However polymer 
viscosity and relaxation time of the polymer 
additive are assumed to be temperature 
dependent. The temperature dependence of 
the non-dimensional Weissenberg number 
and viscosity ratio are as follows 
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where ωr is the retardation parameter 

defined as the ratio of 
μ
μ p  and the 

temperature dependency function, f(T), is 
defined according to Williams-Lendel-Ferry 
(WLF) model which reads; 
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We set the quantities 1=− io TT , c1=15 and 

c2=50 following the literature11.   
In this study Phan-Thien-Tanner   

constitutive relation is used to model the 
viscoelastic fluid. In dimensionless form the 
Phan-Thien-Tanner model reads, 
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where D is the rate of deformation tensor 

and the operator )(
∇

 denotes the upper 
convected derivative as follows, 
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where L is the velocity gradient. 

The stream function-vorticity formu-
lation in cylindrical coordinates is adopted 
and the governing equations are solved 
numerically using a second order centreed 
finite difference scheme. The explicit 
Runge-Kutta-Fehlberg method with time 
step adjustment is used for time integration 
and parameter continuation technique is 
applied. Elliptic stream function-vorticity 
equation is solved by successive over 
relaxation (SOR) method with Chebychev 
acceleration. The grid independency test 
results are shown in Fig. 3 for different grid 
densities and a structured grid with (65x49) 
grid density is chosen for simulations. 
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Figure 3. Velocity component profile 
comparison along the centreline at Re=3, 

We=0.25, β=0.75, Pe=60, α=0.5 and 
Br=0.25 for various grid densities (a) 

transverse velocity component  
(b) radial velocity component 

 
RESULTS AND DISCUSSION 

We present first the dissipation effect for 
a Newtonian fluid at moderate Reynolds 

number. Then elastic effects are shown by 
comparing non-isothermal Newtonian and 
PTT fluid flows. The thermal effects on the 
stress field are also demonstrated.  

 
The effect of viscous dissipation in 
Newtonian flow:  

We first investigate the effects of 
viscous dissipation in the Newtonian case.  
In Fig. (4) the streamlines are shown for 
isothermal and non-isothermal Newtonian 
flow at Re=60, Pe=500, Br=15. The central 
vortex is observed to shift in the positive θ 
direction under viscous dissipation. The 
maximum and minimum stream function 
values are also given with peak locations. 

 
     (a)     (b) 

Figure 4. Streamlines for Newtonian flow 
at Re=60 (a) Isothermal case 

Ψmin=-0.09232,Ψmax=0.0000064, 
xmin=1.2274, ymin=0.1352, (b) Non-
Isothermal case (Pe=500, Br=15) 
Ψmin=-0.111656, Ψmax=0.00002092, 

xmin=1.2248, ymin=0.3125 
 

In Fig. (5) radial velocity component 
profile is plotted along r=1.23 line where the 
minimum stream function and maximum 
temperature peaks are located. An increase 
in the peak value of the radial velocity 
component is observed in the non-
isothermal case. The isotherms can be 
observed in Fig. (6), where the viscous 
heating increases appreciably reaching 
T≈1.84. The maximum and peak values of 



the temperature coincide and the viscous 
heating is observed to occur in the upper left 
part of the cavity. In this Newtonian case as 
the Reynolds number is moderate; the 
viscous heating is pronounced. 

 
Figure. 5 Radial velocity component profiles 

along r=1.23 at Re=60 for Newtonian 
sothermal and non-isothermal cases 

(Pe=500,Br=15) 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Isotherms for Newtonian flow at  
Re=60, Pe=500, Br=15,Tmax=Tpeak=1.83998, 

Tmin=0, xmax=1.1845, ymax=0.3436 
 

The effects of elasticity under thermal 
dissipation:   
 

In this case the effects of elasticity are 
investigated by comparing the non-
isothermal Newtonian case and non-
isothermal viscoelastic PTT case. In Fig. (7) 
the streamlines for Re=0.3 are plotted. The 
vortical structure displays a longitudinal 
elongation in transverse direction with 
viscous dissipation at this low Reynolds 
number for Newtonian case (Fig. (7a)) 
compared to viscoelastic case with We=1, 
β=0.45 (Fig. (7b)). Also the upper right 

corner vortex is observed to disappear under 
elastic effects. 
 
 

       (a)         (b)  
Figure 7. Streamlines for Re=0.3, Pe=900, 

Br=15 (a) Newtonian, Ψmin=-0.101621, 
Ψmax=0.00001072, xmin=1.2285, 

ymin=0.12312 (b) Non- Newtonian PTT 
model , We=1.0, β=0.45, α=0.5, Ψmin=-

0.102764, Ψmax=0.000000375, 
xmin=1.235,  ymin=-0.00881 

 
The isotherms are shown in Fig. (8). 
Although the viscous heating is present in 
the Newtonian case it is not observed in 
viscoelastic case. The location is shifting to 
the center and its value is decreasing as 
shown in Fig. (8(a-b)). In Fig. (9) the 
centreline temperature profiles are given for 
various α values at θ=0.  In Fig. (10) the 
centreline radial velocity component is 
displayed for both cases. It is observed that 
the temperature peak values are increased in 
the pure viscous dissipation (α=1.0) and the 
pure elastic dissipation cases (α=0.0) 
compared to α=0.5 case. 
 
 
 



 
 
 
 
 
  
 

   (a)             (b) 
 

Figure 8. Isotherms for Re=0.3, Pe=900, 
Br=15, (a) Newtonian, Tmax=Tpeak=1.44799, 
xmax=1.1996,  ymax=0.216 (b) PTT, We=1.0, 

β=0.45, α=1.0. , Tmax=1, Tmin=0, 
Tpeak=0.9465, xpeak=1.2491, ypeak=0.0239 

 
 

 
 

Figure. 9 Temperature profiles for PTT case 
along the centreline θ=0 at Re=0.3, Pe=900, 

Br=15, We=1.0, β=0.45, for different α 
values. 

 
 
 
 
 
 

 

Figure. 10 Radial velocity component 
profiles along r=1.23 at Re=0.3 for for non-
isothermal Newtonian and viscoelastic PTT 

cases (We=1.0, β=0.45, α=1.0) 
 
The isothermal PTT flow and non-

isothermal PTT flow are compared in terms 
of stress distributions. In Fig. (11) the 
normal stress difference along the r=1.23 is 
shown, and in Fig. (12) the centreline shear 
stress distribution along the θ=0 is shown. In 
both cases the peak values in the stresses are 
increased.   

 

 
Figure. 11 First normal stress difference 

profiles r=1.23 at Re=0.3, We=1.0, β=0.45, 
for isothermal and viscoelastic PTT cases 

(Pe=900, Br=15, α=0.5). 
 
 
 
 
 
 



 
 

Figure. 12 Shear stress profiles along the 
centreline θ=0 at Re=0.3, We=1.0, β=0.45 

for isothermal  and non-isothermal 
viscoelastic PTT cases (Pe=900, Br=15, 

α=0.5) 
 
CONCLUSION 

Isothermal and non-isothermal flows of 
a viscoelastic fluid have been studied 
numerically for the lid-driven polar cavity 
geometry with cavity angle of θp=π/2 and 
gap ratio of h=4/7. The results have been 
compared to Newtonian case. 

In the Newtonian case the central vortex 
is observed to shift in the positive transverse 
direction and the peak value of the radial 
velocity component increases under viscous 
dissipation effects. The viscous heating 
occurs at the upper left part of the cavity. 

The upper right corner vortex vanishes 
when elastic effects are present for low 
Reynolds number case (Re=0.3) under 
thermal dissipation. Viscous heating is not 
observed in the viscoelastic case (We=1.0, 
Pe=900, Br=15, β=0.45). This can be 
explained by the decrease in apparent 
viscosity under shear thinning leading to a 
decrease in viscous dissipation. The peak 
location for the temperature distribution 
moves to the centre of the cavity and the 
value of this peak decreases under elastic 
effects. The peak value of the radial velocity 
component decreases as well. For 
viscoelastic non-isothermal case, the pure 
viscous dissipation case (α=1.0) leads to the 
highest peak of the temperature at the 
centreline and the pure elastic dissipation 
(α=0.0) leads to a lower peak, however in 

both cases the temperature peaks are higher 
than α=0.5 case.  
It is also observed that normal stress 
difference and shear stress peak values are 
increased under thermal dissipation for the 
viscoelastic case. 
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