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ABSTRACT

Numerical simulation of polymer
processing, or computational rheology, is a
challenging conversion of complex material
properties and operating conditions into
mathematical models and numerical solvers.
In this contribution, we present a quick
overview of a reasonable methodology with
appropriate suggestions for performing a
process simulation with chances of success.

INTRODUCTION
Polymer processing has become a
technologically sophisticated and

commercially important activity. This is
especially true when considering the yearly
production of polymers and the various
applications where polymers are involved.
End-use products can be as diverse as
packaging or mulch films, fibres, bottles,
tubes and pipes, etc. A general trend is an
increasing demand for tailor-made grades
and consumer goods.

The development of a new product often
requires a trial-and-error procedure in order
to fulfil the wvarious technological,
environmental and economical constraints.
Just-in-time delivery may require shortening
development timelines. The development of
a new polymer grade for a given application
also needs a validation phase. Those are
illustrative and typical situations where a
numerical simulation can be considered as a
preliminary virtual experiment endowed
with several advantages.
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In the present context, we focus on
polymer melts, and we are therefore
interested with properties and behaviours
during processing. A careful inspection of
polymer melts reveals the development of
interesting and often anomalous effects'.
Experimental observations such as shear
thinning, strain  hardening, extrudate
swelling, rod climbing, slow secondary
motions, etc. are attributes of viscoelasticity.
They are actually the fingerprint of specific
macromolecular architecture and topology”.
These viscoelastic effects develop with an
intensity that depends on the process and
operating conditions. Shear thinning and

swelling prevail in extrusion, while
elongational effects dominate in fibre
34,5

spinning or film casting™™"".

The purpose of rheology is multi-folded.
Without being exhaustive, it can provide a
general framework for the analysis and
description of macromolecules. It can
constitute a bridge between macromolecular
topology and processability. It serves also
as a bridge between process and simulation.
Indeed, the knowledge of basic properties
enables the selection of a suitable
mathematical model that will subsequently
be used for providing predictions on a given
process.

As can be seen, the topic is very broad,
and still today it offers enough
experimentation ground. Our purpose in the
present contribution is to provide a few
guidelines for using rheology as a bridge



between process and simulation. In the next
two sections, we briefly overview usual
rheological measurements for polymer
melts, with some of their attributes, and
recall some empirical rules. The following
two sections are dedicated to constitutive
modelling and numerical simulation, while a
few guidelines for a relevant selection of
material parameters are presented in a
subsequent section. The last section is
dedicated to some selected numerical
simulations accompanied by experimental
validations.

VISCOMETRIC AND RHEOMETRIC
MEASUREMENTS

A convenient way for characterising the
processability of a polymer melt consists of
performing rheological measurements. Here,
the melt index is probably the simplest
measurement. The procedure is well
documented, and the result is usually a
single point data. Such a data allows
estimating global processing quantities, like
the required power consumption for an
extruder, etc. However, it does not
necessarily allow discriminating between
two different melt grades. More intimate
rheological measurements are therefore
required.

The technology offers a broad range of
rheological measurements®’. It is reasonable
to consider that the most common
rheological data are successively the linear
properties, the non-linear shear viscosity
and the elongational viscosity. Of course,
we understand that an extensive range of
measurements can be costly and is not
always achievable. Also, it is not always
necessary to perform all measurements: here
it can be relevant to consider the kinematics
contribution that dominates in a process.

Commonly, linear properties are
measured in oscillatory regime under small
deformation amplitude. A frequency sweep
allows the determination of both storage and
loss moduli G* and G” vs. frequency ©.

24

For most polymer melts, the measurement of
these linear properties is feasible. In
particular, using the time-temperature
equivalence allows broadening the range of
frequencies, provided that the sensitivity
with respect to temperature is sufficiently
pronounced. The most typical device for
such measurements is the cone-plate
oscillatory rheometer. However, other
techniques can be considered, such as
oscillatory squeeze flow®, while a closed
device may be required for the measurement
of oscillatory properties of rubber’.

When feasible, the steady shear viscosity
T, is measured, e.g. in capillary rheometry;
it provides shear viscosity vs. apparent shear
rate or possibly vs. actual shear rate 7.
Capillary rheometry also enables data
acquisition at relatively high shear rates, as
well as on swelling. It is also interesting to
note that the multi-pass rheometer allows
the measurement of viscosity data at various
pressure levels'®. Capillary measurements
reveal the amount of melt shear thinning.
As most processes involve shear, such a
property is usually of interest.

Finally, transient uniaxial elongational
viscosity n: can be of interest'"'?. This is
especially true for processes involving a
kinematics dominated by extension effects,
such as fibre spinning or film casting. Up to
recent years, a device based on rotating
clamps was probably the most advanced tool
for the measurement of elongational
viscosity at constant strain rate € B Recent
progresses have led to the development of a
new apparatus that takes advantage of
rotating device technology'*".

Of course, the above paragraphs do not
provide a complete list of all possible
measurement devices; it would also be
beyond the scope of this contribution. Other
techniques exist, such as the filament
stretchingm, the Rheotens”, the cross-slot
flowlg, the opposed nozzlesw, etc. Other
mathematical frameworks do also exist,
such as large amplitude oscillatory shear,



e.g. combined to Fourier transform analysis,
for macromolecular and topological
. 2022
investigations™ %,

EMPIRICAL RULES AND
OBSERVATIONS

As already stated, it is not always
necessary to perform all the above
measurements. Either this is not required by
the process under investigation, or
alternatively, possible missing information
can (cheaply) be obtained through the use of
an empirical rule. Here, the Cox-Merz rule
is probably the best known®: it provides
data on shear viscosity M S(?) from linear
oscillatory data G” and G”, as follows:

VG2 +G?

(Q)

As this is an empirical rule, there is no
theoretical background; and usage should
preferably be restricted to materials for
which the validity is generally accepted.
Another Cox-Merz rule establishes a
relationship between the storage modulus
G’ and the first normal stress difference
N{(}), and can be given by:

N (7) (1)

o1

N (1)=2G"(w) (2)

| o=}

This validity of this rule is admitted for low

frequencies. Some developments have led
to more general formulae, such as:
0.7
N2
Ny (¥)= 2G'[1+(%) ] (3)
o=
which has been validated for several

polyethylene melts*.

This quick overview of empirical rules
would certainly be incomplete without the
Gleissle mirror relationships™. They
express a geometrical symmetry between
steady and transient properties. The first
Gleissle mirror relationship relates the
transient and steady shear viscosities:
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ns(Y)=n§(t)\t:1/y “4)

As can be seen, measurements of the
transient shear viscosity at low shear rates
could be sufficient for determining the
steady shear viscosity. Let us remind that
this is an empirical rule, and that its usage
for a given polymer class is subjected to
appropriate  validations and  general
acceptance. Other mirror relationships are
dedicated to the evaluation of first and
second normal stress differences.

Next to those quite useful empirical
rules, which are quantified in mathematical
terms, there are qualitative empirical rules,
which can also be useful. An interesting
empirical observation states that the
bilogarithmic plot of the first normal stress
difference vs. shear stress has a slope
near 2.  Combining this with both Cox-
Merz rules could possibly provide extended
data on the first normal stress difference,
only on the basis of linear measurements.
Indeed, shear stress is extracted from Eq. 1,
early development of first normal stress
difference is extracted from Eq. 2; while the
above bilogarithmic plot extends this data.

Another qualitative empirical
observation  concerns  the  transient
elongational viscosity. Today’s technology
allows the measurement of this property for
strain rates that are often below those
encountered in processing. However, when
available, experimental data indicate that the
transient elongational viscosity develops
along the linear regime and departs from it
at a Hencky strain of about 1 or 21413,
Hence, the knowledge of linear properties
and of a few elongational data at low strain
rates can provide qualitative indications on
the behaviour at higher strain rates.

CONSTITUTIVE MODELLING

When considering the flow of polymer
melts within the framework of continuum
mechanics, extra-stresses T, velocity u and
pressure p are calculated. For the sake of



facility, we purposely omit temperature
effects. With the assumption of
incompressibility, the momentum and mass
conservation equations are given by

Du

—Vp+V.-T=p== 5
p P )

(6)

where p is the fluid density. These partial
differential equations require appropriate
boundary conditions. In simple words, the
boundary conditions describe the process
that is considered as well as the flow
domain. For example, an extrusion process
involves an assigned flow rate at the inlet,
vanishing velocities along rigid walls, a
stress free jet (extrudate) and a stress free
exit. Film casting”® involves nearly the
same conditions, except at the exit where a
take-up velocity is applied.

As can be seen, Egs.5 and 6 do not
suffice for solving the unknowns 7, u and p.
This is obvious if one considers that they do
not invoke any property of the polymer melt
under consideration. This is the purpose of
the constitutive equation, which, to some
extent, describes the melt. In the literature
on 2721 various

Vu=0

continnum mechanics ,
families of constitutive equations are found.
Differential and integral equations are
actually different formalisms for describing
a same physical concept: memory effects.
Presently, we focus on differential
equations, as they are usually easier to
handle in a simulation software.

In order to cope with various time scales
experimentally observed in relaxation
mechanisms, the extra-stress tensor 7' can be

written as a sum of N individual
contributions 7T :
N
T=>T, (7)
i=1

In Eq. 7, all T; involve directly or indirectly
differential relationships. A series of

differential viscoelastic models are of the
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Oldryod type™. They obey a differential
equation written in terms of extra-stress T;
and whose general form is given by:

66Ti = ni(Vu +VuT)

T,G(T;)+ 2, ;

®)

In Eq. 8, A; and m; are material parameters,
namely a relaxation time and a viscosity
factor. Here, we easily understand that
considering several modes in Eq. 7 endows
the rheological model with a relaxation
spectrum. The (scalar or tensorial) function
G(T i) depends on the selected viscoelastic
model, and carries non-linear attributes.
Finally, the term 3/8¢ is a time-derivative
operator (contravariant, covariant, etc.),
which satisfies the basic objectivity and
invariance requirements.
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Figure 1. Dynamic and viscometric properties
of LDPE 6411%°. Experimental data (symbols)

and model properties including the prediction of

normal stress differences (continuous lines).
© Society of rheology.

It is reasonable to assume that all modes
obey the same differential equation, with
their own parameters. Next to the Oldroyd
model, we find the Johnson-Segalman29,
Phan Thien-Tanner’””' and Giesekus™
models. It is worth mentioning that the
viscometric and rheometric properties of
these models depend on a limited number of
real parameters. In Fig. 1, we plot the linear



and viscometric properties of a LDPE melt
together with their model counterparts
obtained with a four-mode Giesekus model.
As can be seen, a good match is obtained.

Next to models of the Oldroyd type,
there exist viscoelastic models for which the
extra-stress tensor T is a function of
configurational quantities, which in turn
obey differential equations. The Leonov
model involves a deformation tensor and a
potential energy function®. In the late
nineties, a model for branched polymers,
based on reptation tube theory, has emerged,
and is referred to as the pom-pom model®.
For each relaxation mode, the extra-stress
contribution involves an orientation tensor
and a stretching scalar. Both these
configurational quantities obey differential
equations and involve material parameters.
The model has been the object of several
studies and improvements®>®.

NUMERICAL SIMULATION

In most situations, the flow governing
equations involve non-linearities, which at
first originate from the selected constitutive
model. Additional non-linearities originate
from the boundary conditions. The most
significant one is the so-called free surface,
whose mathematical expression involves
velocity and geometric attributes.

In view of the non-linearities, the set of
governing equations cannot be solved
analytically, except for a few cases™.
Therefore, numerical simulation tools are
invoked.  Textbooks have already been
dedicated to the topic, such as*®**! In a few
words, the idea consists successively of
discretising the flow domain (e.g. with finite
elements or finite volumes), building and
assembling the system of equations, and
solving the non-linear system with an
appropriate solver.

Obviously the discretised system is
affected by the non-linearities initially
existing. In particular, the combination of
non-linearities, stress convection and
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geometric singularities can lead to the well
known  high Weissenberg number
problem™*. The most frequently observed
symptom is the development of spurious
numerical oscillations in  which the
discretisation grid can often be identified**.
Within the context of finite elements, the
numerical origin of the HWNP has been
evidenced®. In general, the selection of
appropriate discretisations and algorithms
allows circumventing possible
difficulties*®’. But care should also be
taken when selecting the rheological model.
This last item is certainly of interest: this
has allowed the production of simulation
results in agreement with experimental data
for relatively complex flows™'>*,

MODEL PROPERTIES AND
PARAMETER IDENTIFICATION

Based on the above sections, one may
face the a priori difficult question of
selecting the best constitutive equation with
the best appropriate material parameters.
This question can be split into sub-
questions, successively related to the
number of modes, the constitutive model
and the material parameters. Of course,
numerical considerations may interfere in
this procedure.

A preliminary ingredient concerns the
flow kinematics. Indeed, the knowledge of
the dominating kinematics contribution
allows assigning a priority to the various
properties considered. For example, shear
effects mainly dominate in extrusion flow:
linear properties, shear viscosity and
possibly first normal stress differences are
considered at first. Elongational effects
mainly dominate in film casting and fibre
spinning: linear properties and transient
elongational viscosity are considered at first.
Moderate elongation develops in blow
moulding, so that linear properties may
often be sufficient. The dominant
kinematics character should be quantified:
via a typical wall shear rate },, in extrusion,



or a typical strain rate € ¢ in film casting or
fibre spinning.

This information already indicates the
type of measurements to be performed as
well as the corresponding range. This also
quantifies the respective importance of the
various properties involved. If a single-
mode viscoelastic model is selected, an
appropriate relaxation time should be of the
order of 1/}, or 1/¢,. Indeed it is
reasonable to consider that the melt
response time to a solicitation is primarily in
accordance with the reciprocal kinematics
intensity.  If a multi-mode viscoelastic
model is selected, it is sensible to consider
relaxation times on both sides of 1/¥,, or
1/€ fo for a similar reason. Of course,
models with five or ten modes can formally
be consideredsz; the relevance has to be
evaluated with respect to the objectives.

The selection of a particular constitutive
model may be based on the amount of
available experimental data. When focusing
only on shear or extensional properties, the
Giesekus model is a good candidate®.
When all properties are needed, the Phan
Thien-Tanner or pom-pom models can be
considered, since they involve further
parameters’>>". They can also be selected
for the simulation of extensional flows when
only qualitative information is available on
the extensional ViSCOSityS.

Finally, numerical values have to be
assigned to the various model parameters.
We assume that values for relaxation times
have been selected, as suggested above.
When a single-mode model is considered,
the few remaining parameters should be
selected in order to obtain the required
properties in the relevant range of
kinematics. This can be done e.g. along
with a methodology suggested in>>. When a
multi-mode model is selected, viscosity
parameters should preferably be selected in
order to reproduce the linear properties in
the range of interest’®’ Non-linear
parameters are subsequently determined in
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order to endow the selected model with the
required non-linear properties, in the
relevant range of kinematics®*?%%,
However, parameter identification should
not be turned into a mathematical fit, while
computational constraints should be kept in
mind.

SELECTED NUMERICAL
SIMULATIONS AND VALIDATION

The above considerations have been
successfully applied to several viscoelastic
flow situations characterised by different
kinematics attributes. Hereafter we intend
to review and summarise some of these case
studies.

extruder # 2

die channel

extruder # 1

feedblock

feedblock
die channel

(b)

2.54 27.9 53.3 i6lcm

0.
Figure 2. Experimental set-up for the analysis
of secondary motions in straight and tapered
channels: extruders, feedblock and channel™.

© Society of rheology.

Secondary flows in channels

It is established that the second normal
stress difference is responsible for the
development of secondary motions in
viscoelastic flows through non-circular
channels. Early experimental investigations
were performed e.g. by Giesekus™. Various
numerical simulations have been carried out,
and comparisons with experiments have also
been produced. In a recent work™,
secondary motions are investigated in
straight and tapered channels with a square
cross-section. The channel length is about
60 cm, while the cross-section height is
about 1cm for the straight channel and
decreases from 1 to 0.5 cm for the tapered
channel. The secondary motions are




experimentally identified by recording the
deformation of the interface between two
LDPE melt layers with different
pigmentations. In Fig. 2, we display a
sketch of the experimental device.

The present flow is mainly dominated by
shear effects, and a model is identified on
the basis of linear properties, as displayed in
Fig. 1. In particular, Eq. 1 is applied for
estimating the shear viscosity. A four-mode
Giesekus viscoelastic model’” is selected for
performing 3D finite element simulations™.
A transport equation is subsequently used
for tracking the motion and deformations of
both fluid layers, in order to predict these
secondary motions.

z=2.54 z=279 z=53.3

e
i
- ol
-
8 L

Figure 3. Comparison between experiments
(al,bl) and predictions (a2,b2) for the secondary
motions in straight (top) and tapered (bottom)
channels™. © Society of rheology.

Experiments and simulations are carried
out for straight and tapered channels with
square cross-sections. In both cases,
secondary motions exhibit similar patterns:
from the centre towards the walls, along the
walls towards the edges, and from the edges
towards the centre. This can be seen in
Fig. 3, where a comparison between
experiments and predictions shows a good
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agreement. In Fig. 4, we show a prediction
of the interface between both fluid layers.
Such experimental and numerical studies
reveal that the control of multi-layer fluid
systems can be accompanied by serious
difficulties. ~ One of the most typical
situations of industrial relevance is the
coextrusion flow in a coat hanger die.

Figure 4. Shape of the interface between both
fluid layers, for the straight (left) and tapered
(right) channels.

Transient elongational recovery

The knowledge of melt behaviour in
recovery experiments can be relevant for
several industrial polymer processing.
Although time scales are usually short in
actual polymer processing, the acquisition of
relaxation data at both short and long time
scales can be of interest. Transient
elongational recovery is a convenient
rheometrical procedure for acquiring such
data. The experiment consists of stretching
a melt sample at an assigned strain rate. As
a specified Hencky strain is reached, the
sample is released at one extremity and the
transient recovery is measured. In such an
experiment, it is remarkable to note that the
recovery can develop over a time scale
much longer than that of the prior stretching.

Predictions of transient elongational
recovery are compared to experimental
data® for a well characterised HDPE melt.
An extensive rheological characterisation of
the melt is carried out: linear moduli, shear
viscosity and  transient  elongational
viscosity are measured. Based on this, a
multi-mode Phan Thien-Tanner viscoelastic




model’™! is selected. Although nine modes

are considered, five modes may probably be
sufficient. Viscosity factors are identified
from linear properties, while non-linear
parameters are successively determined
from shear and elongational viscosities. In
Fig. 5, we plot the rheological properties of
the HDPE melt and the model counterparts.
As can be seen, a good match is found.
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Figure 5. Linear properties (top) and transient
elongational viscosity (bottom) for a HDPE
melt™. Experimental data (symbols) and model
properties (lines). © Springer Verlag.

The simulations of transient elongational
recovery are performed under the same
conditions as the corresponding
experiments. Starting from rest state, the
sample is stretched, released and recovery is
recorded vs. time. In Fig. 6 we show a

comparison between measurements and
simulations for recovery experiments
performed under  various  stretching

conditions. The recovery is defined as the
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ratio of the initial sample length Ly to the
current one L(f). As can be seen, a good
agreement is found between calculations
and data. As stated above, it is interesting to
note that the recovery develops at least up to
10%s, although stretching time is of the
order of the second. At distant time scales,
when viscoelastic stresses are nearly fully
relaxed, surface tension starts to play a role.

6 7’
Ly/L(t)
5 — oxp 0.01|3
— FEMO0.01|3 Lot
4 ——oxp 0.1]1 Rogris
— _ FEMO.I]1 o
....exp1|2| ‘,J .
____FEM1|2 Rt
3 .
/s
2 -—}'”‘V
1 time [s]
100 100 10! 10 103 10*

Figure 6. Measurements and predictions of
transient elongational recovery under various
stretching conditions [strain rate | Hencky
strain]’®. © Springer Verlag.

An important remark must be added.
This application has been simulated with
accuracy requirements that are probably
beyond industrial relevance. Of course,
relaxation mechanisms and shape recovery
do occur in extrusion process; however, they
are quickly frozen on a production line. In a
way, the present experiments and
simulations can certainly serve rheological
objectives, e.g. for macromolecular
characterisation.

Stresses in contraction flow

Most industrial viscoelastic flows occur
in geometries that exhibit abrupt cross-
section changes. It is therefore interesting
to consider the well-defined 4/1 contraction
flow, for which an abundant literature on
experimental and modelling aspects exists.
Next to the analysis of flow patterns, such a
flow case also allows evaluating the
performances of constitutive models as well
as of simulation softwares.
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Figure 7. Measurements (symbols) and model
predictions of transient elongational viscosity of
a LDPE at various strain rates™. © Elsevier.

In planar flow situations, when the melt
is transparent, birefringence techniques
allow evaluating the principal stress
difference, by applying the stress-optical
rule. Again, a comparison with predictions
is interesting. This is performed for the
contraction flow of a LDPE melt
characterised by a moderate branching
level®®*®.  Here too, extensive rheological
measurements are carried out, and the melt
is described with a four-mode viscoelastic
pom-pom model’™. In particular, a series
of non-linear parameters, characterising the
branching level, are determined from the
elongational viscosity. Fig. 7 displays the
measurements of the transient elongational
viscosity at various strain rates, as well as
the model counterparts. A deviation is
found at low strain rate, it results from the
absence of a very long relaxation time in the
model.

Birefringence photographs provide only
a series of dark and light streaks. A
conversion is needed for evaluating the
principal stress difference from
birefringence and vice-versa. An appropriate
calibration on the basis of a well-defined
flow field (Poiseuille flow) enables
identifying the stress optical coefficient™.
A comparison between predictions and
birefringence measurements at a relatively
high flow rate is shown in Fig. 8. A good

agreement is found for the development of
fringes in the vicinity of the contraction,
despite possible uncertainties near the
reentrant corner.

Figure 8. Experimental (top) and predicted
fringes for the contraction flow at a high
downstream wall shear rate®. © Elsevier.

Fig. 9 shows the stress development
along the symmetry line of the contraction
and along a line close to the downstream
wall. Experimental data on the principal
stress difference are obtained via a careful
counting of fringes. Here also, a good
agreement is found. It must be noted
however that no reliable experimental data
can be obtained close to the wall, where
fringes are mainly oriented along the flow
direction. In general, the relevance of such
a calculation is that it enables the prediction
of stress levels as well as of secondary
motions (possible dead zones).
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Figure 9. Experimental and calculated principal
stress difference along the central symmetry line
and along a line close to the downstream wall of

the contraction™. © Elsevier.



Coextrusion film casting

Numerical simulation can also be
applied to the analysis and optimisation of
actual industrial flows. For this purpose, we
select the coextrusion film castings, where
narrow LDPE melt stripes are used for the
production of thin LLDPE films. The
concept is illustrated in Fig. 10, where we
see a portion of the film with the white
LDPE stripe, between the slit die exit and
the contact on the chill roll.

Figure 10. Coextrusion film casting: close view
of the film between the die exit and the contact
with the chill roll indicated with the arrow.

From the point of view of geometry, the
film is characterised by a dimension that is
several orders of magnitude lower than the
other ones. For this purpose, a thin film
model is used, where the thickness becomes
an unknown together with the velocity and
stresses™®. It is worth mentioning that the
flow kinematics in film casting is essentially
dominated by elongation.

From the point of view of rheology, both
melts are characterised in the linear regime.
In particular, no data is available on the
extensional viscosity. The inspection of
linear properties shown in Fig. 11 reveals
that the LDPE exhibits a more pronounced
shear thinning behaviour than the LLDPE.
In addition, from general knowledge, it is
accepted that LDPE melts exhibit a
significant strain hardening behaviour in
uniaxial extension, which originates from
branching. These data and considerations
allow determining a four-mode Phan Thien-
Tanner fluid model®®?' for both melts.
Viscosity factors are determined from the
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linear properties, while the parameters
controlling the elongational viscosity are
selected in accordance with the qualitative
information in extension.

5
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Figure 11. Linear properties of both LDPE and
LLDPE melts used in coextrusion film casting.

Experiments are performed at various
melt flow rates and take-up velocities while
transverse thickness profiles are measured.
Numerical simulations are performed under
the same conditions, and thickness profiles
are also recorded. In Fig. 12, we report the
measured and predicted thickness profiles
vs. the distance from the film edge. Again,
a good agreement is found. This result is
remarkable, = when  considering  the
assumptions made and the basic knowledge
on the rheological melt properties.

—— simulation
—— left exp.
—a— right exp.

X [mm]
0 100 200 300 400
Figure 12. Profiles of measured and predicted
transverse thickness / vs. the distance x from the

film edge.

CONCLUSIONS

Simulation of polymer processing
remains an activity endowed with various
aspects: property measurement, modelling



and assumptions. Interestingly, despite the

geometric simplicity of flow domains
involved,  relatively = complex  melt
behaviours are found. They mainly

originate from intrinsic material attributes,
and a property develops according to the
prescribed boundary conditions.

A few applications have been shown,
with a comparison against experimental
data. A good quantitative agreement has
often been found. This is certainly true and
easy to admit when a very refined
rheological model is used. But relevant
predictions are also found when the selected
model is endowed with uncertainties,
originating from a lack of relevant data.

It is probably important to realise that
the availability of constitutive equations
endowed with required properties, such as
shear thinning, strain hardening, is of great
help. Beyond that, a careful identification
of kinematics features, good engineering
feeling, awareness of potentialities and
limitations of data, models and solvers are
necessary  ingredients for  successful
predictions.
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