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ABSTRACT
Shear banding, the formation of localized
bands of differing shear rates, is a phenomenon
observed in many soft materials. Here we have
developed a novel thermodynamically consis-
tent two-fluid model to study steady-state shear
banding in semi-dilute entangled polymer so-
lutions. In this model, the formulation of the
boundary conditions is straightforward, as the
differential velocity is considered as a state
variable. The behavior of the model was ana-
lyzed for a cylindrical Couette flow and a rec-
tilinear channel flow. We found that stress-
induced migration is the diffusive term respon-
sible for the formation of shear bands. The
steady-state solution is smooth and unique with
respect to different deformation histories and
different values of the diffusivity constant. The
simplicity of this model makes it attractive for
use in more complex flows.

1 INTRODUCTION
Shear banding occurs in soft materials such as
wormlike micelles, semi-dilute entangled poly-
mer solutions, and soft glassy materials. Under
strong shearing deformations, these fluids can
develop inhomogeneous regions in the flow, in-
cluding multiple localized bands with different
shear rates, known as shear bands. Typically,
the shear stress of semi-dilute entangled poly-
mers monotonically increases with the shear
rate. Several one-fluid reptation models such as
the Rolie-Poly model1 can realistically capture
the flow curve and predict transient banding.
However, there is experimental evidence for the
possibility that shear bands can also exist at
steady state.2, 3 Furthermore, experimental data
suggest that polymer solutions can form spa-

tially inhomogeneous concentration profiles.4, 5

Accordingly, it has been hypothesized that the
mechanism giving rise to shear banding is the
coupling between the polymer stress and con-
centration through diffusion.6, 7

The two-fluid method is appropriate for in-
vestigating diffusional processes in complex
fluids. In this approach, it is assumed that
the local gradients in concentration and vis-
coelastic stress generate a difference between
the velocities of the polymer and the solvent
molecules, which allows them to diffuse at dif-
ferent speeds. Cromer et al6 developed a two-
fluid model for semi-dilute entangled polymer
solutions using kinetic theory. In their model,
the diffusive terms were included in the time
evolution equation for the polymer concentra-
tion. Therefore, to conserve the polymer con-
centration, a no-flux condition at boundaries
was necessary. To construct the other boundary
conditions, the differential velocity vanishes at
the boundaries. To predict the polymer stress
more reliably at rapid deformations, the Rolie-
Poly model was used to describe conforma-
tional dynamics. Germann et al8, 9 recently de-
veloped a two-fluid approach using the general-
ized bracket approach of non-equilibrium ther-
modynamics. The advantage of this new ap-
proach is that the differential velocity is treated
as a state variable. Consequently, the additional
boundary conditions arising from the derivative
diffusive terms can be imposed directly with re-
spect to this variable. Furthermore, the descrip-
tion can be easily extended to multiphase sys-
tems as the total mass is conserved by the time
evolution equations themselves.

Cromer and coworkers studied shear band-
ing in semi-dilute entangled polymer solutions
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ABSTRACT
A high sensitivity system for capillary
rheometry capable of simultaneously de-
tecting the onset and propagation of insta-
bilities and the first normal stress differ-
ence during polymer melt extrusion flows
is here presented. The main goals of the
study are to analyse the nonlinear dynam-
ics of extrusion instabilities and to deter-
mine the first normal stress difference in
the presence of an induced streamline cur-
vature via the so-called ’hole effect’. An
overview of the system, general analysis
principles, preliminary results and overall
framework are herein discussed.

INTRODUCTION
Capillary rheometry is the preferred
rheological characterisation method for
pressure-driven processing applications,
e.g. extrusion, injection moulding. The
main reason is that capillary rheometry is
the only method of probing material rheo-
logical properties in processing-like condi-
tions, i.e. high shear rate, nonlinear vis-
coelastic regime, albeit in a controlled
environment and using a comparatively
small amount of material.1 Thus, it is
of paramount importance to develop new
techniques to enhance capillary rheome-
ters for a more comprehensive probing of
material properties. Extrusion alone ac-
counts for the processing of approximately
35% of the worldwide production of plas-
tics, currently 280⇥ 106 tons (Plastics Eu-
rope, 2014). This makes it the most im-
portant single polymer processing opera-

tion for the industry and can be found in
a variety of forms in many manufacturing
operations. Extrusion throughput is lim-
ited by the onset of instabilities, i.e. prod-
uct defects. Comprehensive reviews on the
subject of polymer melt extrusion insta-
bilities can be found elsewhere.4,6 A re-
cent method proposed for the detection
and analysis of these instabilities is that of
a high sensitivity in-situ mechanical pres-
sure instability detection system for cap-
illary rheometry.8,10 The system consists
of high sensitivity piezoelectric transducers
placed along the extrusion slit die. In this
way all instability types detectable, thus
opening new means of scientific inquiry. As
a result, new insights into the nonlinear dy-
namics of the flow have been provided.9,14

Moreover, the possibility of investigating
the reconstructed nonlinear dynamics was
considered, whereby a reconstructed phase
space is an embedding of the original phase
space.2,14 It was shown that a positive Lya-
punov exponent was detected for the pri-
mary and secondary instabilities in lin-
ear and linear low density polyethylenes,
LDPE and LLDPE,.14 Furthermore, it was
determined that Lyapunov exponents are
sensitive to the changes in flow regime and
behave qualitatively different for the iden-
tified transition sequences.14 It was also
shown that it is possible to transfer the
high sensitivity instability detection sys-
tem to lab-sized extruders for inline ad-
vanced processing control and quality con-
trol systems.13

A very recent possibility considered
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for Couette flows between parallel plates and
concentric cylinders.6, 7 Although the shear
banding behavior of these polymeric systems
has yet to be theoretically studied for Poiseuille
flows, numerical predictions by the Vasquez-
Cook-McKinley (VCM) model are available
for wormlike micellar solutions.10 It was nu-
merically shown for wormlike micelles that
above a critical pressure gradient, the velocity
profile exhibits a plug-like profile with a high
shear band near the walls and a low shear band
near the center of the channel. The kink sepa-
rating these bands is related to the local maxi-
mum in the profile of the first normal stress dif-
ference. Furthermore, the volumetric flow rate
undergoes a spurt as the pressure gradient is in-
creased above a critical value.

Here we aimed to adopt the new two-fluid
approach to describe the diffusion banding in
semi-dilute entangled polymer solutions within
either a cylindrical Couette flow or a Poiseuille
channel flow. The remainder of this article is
organized as follows. In Sec. 2, we describe the
two-fluid method. The behavior of the model is
analyzed for the flows in Sec. 3 and the conclu-
sion is drawn in Sec. 4.

2 POLYMER MODEL
In this section, we present a new two-fluid
model for semi-dilute entangled polymer solu-
tions developed using the two-fluid framework
of generalized bracket approach of nonequilib-
rium thermodynamics.8, 9 The total system is
considered to be closed, isothermal, and incom-
pressible. This system consists of one poly-
meric species and one viscous solvent. For
the polymer, we define the following variables:
the mass density rp, the momentum density
mp = rpvp, and the conformation tensor cp, de-
fined as the second-moment of the end-to-end
vector of the polymer chains. Furthermore, vp

denotes the velocity field and np = (rp/Mp)NA
the polymer number density, with Mp being the
molecular weight of the polymer and NA the
Avogadro constant. For the viscous solvent, the
following variables are defined: the mass den-
sity rs and the momentum density ms = rsvs,
where vs is the velocity field. The governing

time evolution equations are given as
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Eq. (1) is the Cauchy momentum balance, with
t being the time, r = rp +rs the total constant
mass of the polymer solution, p the pressure,
v the total average velocity of the polymer so-
lution, and sss the total extra stress. Eq. (2) is
the time evolution equation for the differential
velocity DDDv, where K is the modulus of elas-
ticity, kB the Boltzmann constant, T the abso-
lute temperature, hs the viscosity of the sol-
vent, G0 the modulus of elasticity, D the dif-
fusivity constant, and sss p the extra stress asso-
ciated with the polymer. The divergence of sss p

accounts for the stress-induced migration and
the spatial gradients of the number densities de-
scribe the Fickian diffusion. Eq. (3) is the time
evolution equation for the polymer concentra-
tion. It is a material derivative that accounts
for the fact that the polymer concentration can
vary locally. Eq. (4) is the time evolution equa-
tion for the conformation of the polymer. The
left-hand side and the first three terms on the
right-hand side constitute the upper-convected
time derivative. The fourth term on the right-
hand side is the Giesekus relaxation account-
ing for hydrodynamic interactions, with a be-
ing the anisotropy factor. This term was added
to capture the overshoot of the shear stress dur-
ing the start-up of a simple shearing flow trig-
gering the shear band formation. The fifth term
in Eq. (4) is a nonlinear relaxation term that we
added to capture the upturn of the flow curve
at high shear rates. The power-law pre-factor
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[K/(kBT )trc�3]q is a scalar function of the
trace of the conformation tensor, which is a rel-
ative measure for polymer extension. Note that
this term closely resembles the term used in the
Rolie-Poly model to describe convective con-
straint release including chain stretch.1 The last
term of Eq. (4) controls the smoothness of the
profiles according to the value of the nonlocal
diffusivity Dnonloc. The time evolution equa-
tions are closed by an explicit expression for
the extra stress

sss = sss p +hs

h
———vs +(———vs)T

i

= np (Kc� kBT I)+hs

h
———vs +(———vs)T

i
, (5)

where the first term accounts for the viscoelas-
tic stress associated with the polymer and the
second term for the contribution of the viscous
solvent. The phase velocities associated with
the polymer and the solvent can be calculated
using the total average velocity and the differ-
ential velocity as follows:

vp =v+
rs

r
DDDv , (6)

vs =v�
rp

r
DDDv . (7)

In the new model, the differential velocity is
considered as a state variable. The extra bound-
ary conditions arising from the derivative terms
appearing in Eq. (2) can be directly formulated
with respect to this variable. For instance, no-
slip and no-penetration conditions are recov-
ered if the tangential and normal components
of the differential velocity are set to zero at
the walls, respectively. Furthermore, the addi-
tional stress-diffusive term appearing in Eq. (4)
requires special treatment on the boundaries.
We set the parameter Dnonloc equal to zero on
the solid walls since diffusion should vanish at
these locations within a distance less than the
radius of the Gyration because of local surface
effects.

We worked with dimensionless quantities.
Location is scaled by the characteristic length
H, time is scaled by the characteristic relax-
ation time t̃ = t/l1, the extra stress and the
conformation tensor are scaled as s̃ss = sss/G0

and c̃ = (K/kBT )c, respectively, where G0 =
n0

pkBT . The dimensionless parameters with re-
spect to these scalings are the elasticity num-
ber E = G0l 2

1 /rH2, the ratio of the molecu-
lar weight of the solvent to that of the poly-
mer c = Ms/Mp, the polymer initial concentra-
tion µ = npeq/(npeq + cnseq), where npeq and
nseq denote the polymer and the solvent number
densities at the equilibrium state of rest, respec-
tively, the viscosity ratio b = hs/h0, the ratio of
the characteristic relaxation times e = l1/l2,
and the local and nonlocal diffusivity constants
D̃ = Dl1/H2 and D̃nonloc = Dnonlocl1/H2, re-
spectively.

3 RESULTS AND DISCUSSION
The model was solved for a cylindrical Couette
flow and a Poiseuille channel flow. The model
parameters were determined by fitting to the
steady shear rheology of a 10 wt/wt% (1.6M)
polybutadiene solution.11 The flow problem
was solved using a Chebyshev pseudospectral
procedure with 200 discretization points as de-
scribed in Refs.8, 9, 12

For the cylindrical Couette flow, we used
the cylindrical coordinate system as the refer-
ence frame. The characteristic length is given
as H = Ro �Ri, where Ro and Ri are the radii of
the outer and inner cylinders, respectively. Sub-
sequently, we take the normalized coordinate
r̃⇤ = (r � Ri)/H to indicate the location in the
cylindrical gap. The outer cylinder is kept sta-
tionary, whereas the inner cylinder rotates with
the azimuthal velocity specified as in Refs.:8, 9

ṽq (r̃⇤ = 0, t̃) = Wi tanh(ãt̃) . (8)

Here, ã denotes the dimensionless ramp rate
of the rheometer and Wi = l1V/H the Weis-
senberg number with V being the dimensional
angular velocity.

Fig. 1 shows the steady-state profile of the
polymer number density with and without the
stress-induced migration. It is obvious that
stress-induced migration is responsible for the
occurrence of the shear bands. The horizontal
line indicates that the polymer number density
is nearly uniform across the cylindrical gap if
the stress-induced term is ignored.
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Figure 1. The number density of the polymer
is calculated for the model with and without

the term corresponding to stress-induced
migration. The values of the model parameters

used in the calculation were a = 0.73,
e = 0.0025, q = 1.46, Wi = 6,

b = E�1 = 10�5, µ = c = 10�1, and
D̃ = D̃nonloc = 10�3.

Figure 2(a) and 2(b) display the effect of the
Weissenberg number on the steady-state pro-
files of the velocity and polymer number den-
sity, respectively. Two distinct shear bands can
be seen for 3 < Wi < 63. If we increase the Wi
parameter, the kink separating the bands moves
from the rotating inner wall to the stationary
outer wall. The profile of the polymer concen-
tration is banded, which is in contrast to the
predictions of standard polymer models. The
curvature of the geometry justifies the curved
shape of this profile.

Figure 3 shows how the deformation history
affects the steady-state profile of the polymer
number density. This was determined by ramp-
up and ramp-down tests. We started the ramp-
up test from rest and the ramp-down test from
the steady-state solution at Wi = 100. A unique
steady-state solution was obtained independent
of the deformation history.

Figure 4 shows the effect of the nonlocal
diffusivity constant D̃nonloc on the steady-state
velocity profile. The profile is smoother for
larger values of D̃nonloc.

For the Poiseuille flow in a rectilinear chan-
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Figure 2. The profiles of (a) the velocity and
(b) the polymer number density calculated for

different Weissenberg numbers. The other
model parameters are the same as those given

in the legend of Figure 1.

nel, we used the cartesian coordinate system
with the origin at the centerline. The walls are
kept stationary whereas a nonzero dimension-
less pressure gradient P̃x = DpH/LG0 is ap-
plied in the x-direction. To avoid unnecessary
computations, we solved the model for half of
the channel.

Figure 5 shows the effect of the value of
the pressure gradient on the steady-state pro-
files of the velocity and the polymer concentra-
tion across the gap. Here, ỹ denotes the location
in the channel width, with ỹ = 0 and 0.5 corre-
sponding to the centerline and the wall, respec-
tively. The velocity profile forms a low shear
rate band near the center and a high shear rate
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Figure 1.
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Figure 4. Effect of the nonlocal diffusivity
constant on the steady-state profile of the

velocity. The other model parameters are the
same as those given in the legend of Figure 1.

band near the wall. A striking difference to the
predictions of the VCM model is that the transi-
tion between the shear bands is smooth even in
the case of zero stress diffusion. Furthermore,
the plug-like profile is observed over a wider
range of the dimensionless pressure gradients
(i.e., for 1 < Px < 200). The concentration
bands are also predicted for the same range.
For larger pressure gradients, the polymer con-

centration is more homogeneous with the kink
closer to the centerline. It is worth noting that
in contrast to the VCM model, this solution is
unique for all pressure gradients and no hys-
teresis is observed in ramp up/down tests.
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Figure 5. Influence of the pressure gradient on
the steady-state profiles of the (a) velocity and
(b) polymer concentration across the channel.

The values of the model parameters used in the
calculation were a = 0.73, e = 0.0025,

q = 1.46, b = E�1 = 10�5, µ = c = 10�1,
and D̃ = D̃nonloc = 10�3.

4 SUMMARY AND CONCLUSIONS
Using the generalized bracket approach of
nonequilibrium thermodynamics, we have de-
veloped a two-fluid model to study shear band-
ing in semi-dilute entangled polymer solutions.
Unlike in previous two-fluid models, the dif-
ferential velocity is treated as a state vari-
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able, which makes the specification of the ex-
tra boundary conditions straightforward. We
used the Giesekus relaxation in the polymer
conformation equation to account for hydrody-
namic interactions and to capture the overshoot
of the shear stress. We added a nonlinear re-
laxation term to predict the upturn of the flow
curve at high shear rates. This term is simi-
lar to the term used in the Rolie-Poly model,
which describes convective constraint release
and chain stretch. Moreover, a stress-diffusive
term was added to the conformation equation
to control the smoothness of the profiles. We
found that the stress-induced migration is the
diffusive term responsible for the formation of
the shear bands. The steady-state profiles are
smooth and unique with respect to applied de-
formation history and the value of the diffusiv-
ity constant. Further boundary conditions such
as slip conditions can be easily investigated if
the differential velocity is treated as a state vari-
able. The simplicity of our model makes it at-
tractive for the study of complex flows.
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