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ABSTRACT

The unsteady, axisymmetric 3-D film
blowing flow of a polymer melt is studied
numerically with thermal and crystallization
effects. The mass, momentum and energy
balance equations with constitutive and
crystallinity ~ equations are solved
sequentially using Galerkin finite element
discretization with updated movements of
mesh and material.

INTRODUCTION

The polymer films are mostly produced
by film blowing process. After extrusion,
the polymer melt is stretched in radial
direction by cooling air injected through the
centre of the die, and in axial direction by
the nip rolls. Due to crystallization,
extension of the polymer melt in both the
radial and down-stream directions stops at
the frost line. This process is used
extensively ~ with  polyethylene  and
polypropylene. In this study the 3-D film
blowing process is modelled numerically for
a LLDPE. Since the pioneering study of

Pearson and Petriel-3 the numerical studies
in the literature for film blowing process
modeled blown films as a surface with
mechanical properties of a membrane due to
small bubble thickness. In these studies the
computational domain reduced to a 1-D

curvel-11,  With  these assumptions
governing equations are related to the
geometry of the film through kinematic
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relations and reduced to a set of highly-
nonlinear ordinary differential equations.
However this approach has many
drawbacks: it is not possible to model the
flow inside the die, the changes through the
film thickness cannot be calculated and the
stress boundary conditions at the die exit are
not accurate. In this study we enlarged the
computational domain further so that the
tubular die is partially included, and solved
for balance equations without any
simplifications and minimized assumptions.
The model presented in this study is solved
numerically in 3-D axisymmetric space with
a Finite Element code. The free surfaces are
modeled using the Arbitrary Lagrangian
Eulerian (ALE) formulation, thus the mesh
movements with the material is captured.
The governing equations are integrated in
time sequentially with Explicit Euler
method. The constitutive relations and the
momentum balance are handled with a semi-
implicit  technique. Discrete  Elastic-
Viscoelastic Stress Split Method, Log-
conformation representation and Streamline-
Upwind Petrov Galerkin techniques are
employed for stabilization purposes.

MATHEMATICAL FORMULATION
Figure 1 schematically shows the flow
domain, boundary conditions and the mesh
on which the balance equations are solved
sequentially with the Galerkin finite element

method. The annular die thickness is 1mm
(Ro-Rj) the length of the film is 100mm.
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Figure 1. Geometry of the blown film,
annular die and the boundary conditions

The die length is 20 mm. The traction-free
conditions are applied on free film surfaces
I's and I'jp. No-slip boundary condition is
applied on the die walls; I'y, I's, I'; and I'7,
The constant temperature boundary is
applied on the die walls and robin type of
boundary condition is applied on free film
surfaces and on boundary @9 insulation
boundary condition is applied. The
convection heat transfer coefficients, hjpner
and hoyer, the traction force t and the cooling
air temperature T,i;, are modified for the 3-D
axisymmetric case.

The mass and momentum balance is
given by

V-u=0 (1)
Vp—V-1=0 (2)

where u is the velocity vector, p is the
pressure, T is the polymer extra stress tensor.
eXtendend Pom-Pom (XPP) model is
adopted as the constitutive relation for the
polymer  stresses.  This  viscoelastic
constitutive model is successfully used to
model fiber spinning, which is an

extensional deformation process as welll2,
In terms of confirmation tensor ¢, the XPP
model reads:

Etu-ve— (V' c—c-Vu+(c) =0(3)
with

146

mner

free film inner surface Uz=U,
t(=Ri(t), z, t)=f(z, t)

= Hipner (2)T (r = R (1), 2,0) - T,,)

2 3
f(c) = }\—Sexp[v(A - 1)] (1 — ﬁ) c+
1 3c
= (=-1). 4)
where A is the tube stretch A = V/trc, A is
the relaxation time of the backbone tube
orientation, A is the relaxation time of the
backbone tube stretch and the parameter v is
defined as v = 2/q where q is the number
of the arms at both ends of the backbone. In
this study, we set Ay/As=2, and q=5.
Polymer extra stress tensor, for the XPP
model, is given by

T=G(c-1) (5)

Where modulus defined as G =1n/A,, N is
the zero shear rate viscosity and I is the unit
tensor. Logarithm of conformation tensor
transformation is used to improve the
numerical stability of the problem thus the
constitutive relation in equation (3) has the
following form:

Z+u-Vs—g((VwT,s) = 0. ©)

where log conformation equation s =
log (c) and back substitution ¢ = exp (s).
For more details about the Log -
Conformation Representation please see
Van der Walt12. The movement of the free
film surfaces are described by a height
function H(z,t), which is initially defined by

Keuningsl4 and later applied to extrudate
swell model by Choild and fiber spinning
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by Van der Waltl2. The unsteady kinematic
relation for the height function in axial and
radial direction is given by

oH oH
¢ T UzFs 3, = Urps (7)
where u,rs and u.ps are the axial and

radial velocity components at the free
surfaces, respectively. These equations are
solved for obtaining both inner and outer
free surface movements. The Arbitrary
Lagrangian- Eulerian (ALE) formulation is
used to maintain the adaptation of the free
surfaces and the motion of the flow
domain'?. The initial and boundary
conditions should be defined for t=0 and on
the boundaries of the flow domain. The flow
in the annular die is modelled as presented

in Bogaerds et al.14. Between inlet and the
inner  boundary, periodic  boundary
conditions are applied, as shown in Figure 1.
The die walls are imposed to no-slip
boundary conditions. The free film surfaces
are imposed to traction-free boundary
conditions. The nip roll velocity is imposed
at the end of the film. The initial conditions
for the free surface film radii are set equal to
the inner and outer die radii. The initial
condition for the stress over the flow field is
imposed over the conformation tensor,
c(1,z,t=0)=1.

The energy balance equation reads;

pcp o = V2T + pXoAH X + 6:D  (8)
where % denotes the material derivative, p
is density, c, is the heat capacity, k is the
thermal conductivity, X, 1s the final
crystallinity, AH is the heat fusion, ¢ is the
stress tensor and D is the rate of strain
tensor. The Drichlet type boundary
condition is used in the die walls and Robin
type boundary condition is used at the free
film surfaces. The convective heat transfer
coefficient is defined as a seventh order
polynomial with constant coefficients. The
proposed heat transfer coefficient used in
this study is obtained by integrating the heat
transfer coefficient used in the study of

Doufas!! along the film, see Fig. 2.
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Figure 2. Fitting of the heat transfer
coefficient for the free film surfaces,
numerical integration of the coefficient in

the literaturel I, the 7™ order polynomial fit
used in this study

The Schneider rate equations are used to
calculate the volume fraction of the
crystalline structure due to cooling. At an
undisturbed volume the kinematic relations
for the crystal structure development for
length density, surface density and volume
density are as follows:

¢3; = 8nN
‘1?2 = Gos
<P1 = G, )
$o = G,y

where G is the crystal growth rate and N is
the nucleation rate. The flow induced
component of the kinematic relations
structure development for length density,
surface density and volume density are as
follows:

Y3 = 8nN'
Yz = GpN¢L
1111 = Gu; (10)
Yo = Guy

where N’¢ is the flow induced nucleation
rate, G, is the flow induced crystal growth
rate, L is the length of shish per unit
volume. The total space filling is calculated
with Kolmogorov-Avrami model as follows:
—In(1 - x) = + ¢ (11)
Initial condition for the space filling is taken
equal to 10 everywhere in the flow domain.
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RESULTS

In this section the results of the 3-D model
is presented. First the temperature and
crystallinity effects are investigated and the
results are compared with the results in the
literature under similar process conditions.

Increasing
time
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In Figure 3, the temperature and space
filling distributions are shown for advancing
time. The corresponding bubble shape is
shown in Figure 4. The freeze line for this
case is observed around z=65mm. The
changes along the thickness around freeze
line z=65, is shown in Figures 5.

25
Die swell
&~ .
2 Freeze line
£ 7~65 mm
£
:’ Y
15

0 10 20 30 40 50 60 70 80 90 100
z (mm)

Figure 4. Bubble shape, Dr=10, AP=0.0015
XPP model
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Figure 3. (a) Temperature distribution
evolution along the outer film surface (b)
space filling distribution evolution along the
outer film surface, Dg=10, AP=0.0015 XPP
model
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thickness along z=65mm

Figure 5. Dimensionless stresses and space
filling distributions along the thickness at
z=65mm, Dr=10, AP=0.0015 XPP model
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Figure 6. Comparison of the film
temperature with the experimental result in

the literature! 1 , Dr=10, AP=0.0015 XPP
model

The available heat transfer coefficients in
the literature are mostly for steady state
representations where the cooling occurs
through the machine direction. However the
present formulation is unsteady and the
cooling takes place through the free
surfaces. The heat transfer coefficients along
the free surfaces are obtained using the
available experimental and numerical
studies in the literature. By means of the
new boundary conditions the converged
results for non-isothermal case is shown in
Fig. 1 to 5 and the comparison with the
literature is shown in Fig.6.

A new and efficient numerical method is
developed for unsteady film blowing
process with inclusion of die region. Steady
results are successfully obtained for
moderate draw ratio and low pressure
difference. This algorithm will be valuable
tool to analyze the rheological processes
with free surfaces.
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