
 

ABSTRACT 
The effect of fluid’s yield stress on the 

peristaltic mixing performance is 
investigated. Flow domain is a rectangular 
cavity with bottom wall generating a 
peristaltic wave. It is found that for small 
amplitude waves, yield stress improves the 
mixing performance. For large amplitude 
waves, yield stress weakens the mixing 
efficiency.  

 
INTRODUCTION 

Peristaltic motion is an efficient means 
for fluid transport in physiological systems. 
It is also the basis of peristaltic pumps used 
in industry for the transport of slurries and 
highly viscous fluids. In recent years, it is 
increasingly being used as an efficient tool 
for mixing enhancement in microsystem 
devices. The need for mixing small volumes 
of fluid without the contact of any 
mechanical component in miniaturized 
devices has highlighted the efficiency of 
peristaltic mixers. In the past years, several 
investigations have been carried out to study 
the applicability of peristalsis for fluid 
handling in MEMS devices in several test 
cases 1-3. In the theoretical domain, Yi et al.4 
was among the first who determined 
analytical solutions for this problem who 
derived the analytical profiles of velocity for 
small amplitude waves. In a similar study, 

Selverov and Stone5 developed theories for 
peristaltic transport in the rectangular cavity 
with one vibrating wall. Kumar et al.6 
numerically simulated the species transport, 
flow field and mixing in a peristaltically 
driven closed channel with one vibrating 
wall. Ng and Ma7 investigated the steady 
Lagrangian flow field induced by small 
amplitude peristaltic waves applied to the 
walls of a closed cavity.  As mentioned, a 
large amount of work has been carried out 
on the behavior of Newtonian fluids in 
peristaltic mixers and what has not been 
provided is the non-Newtonian fluids 
behavior in this regard.  Considering the fact 
that a wide variety of physiological and 
industrial fluids fall in the category of 
viscoplastic fluids, we decide to study the 
Bingham fluid behavior in a peristaltic 
mixer addressing the effect of yield stress on 
the flow kinematics. 
 
MATHEMATICAL FORMULATION 

We consider peristaltic flow of a 
Bingham fluid in a closed cavity of length L 
and height H (where A = L/H is the aspect 
ratio of channel) with a width much larger 
than the other two dimensions (see Fig. 1), 
so the flow induced in the channel can 
safely be taken as two-dimensional. The 
bottom wall is flexible whereas the three 
other walls are assumed to be rigid. As can 
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be seen in Fig. 1, a travelling wave is 
propagating from left to right giving rise to 
fluid transport in the streamwise direction.  
 

 
Figure 1. Schematic showing of the flow 

geometry. 

The vibration mode of the bottom wall is 
followed by the model presented by Yi et 
al.4 The peristaltic wave with the 
wavelength of λ  and wave amplitude of 

( )H aε =  is applied to bottom wall of the 
domain while the side and top walls are 
fixed. Form of travelling wave for the 
bottom wall is generally written as: 
 
y =εHf (x,t,ω,λ)  (1) 
 
    Where ω , ε  and f  represent the wave 
angular frequency , wave amplitude ratio 
and the wave shape, respectively. x , y are 
the coordinates of a point on the wall and t  
is the time. Yi et al.4 proposed the following 
expression for the wave shape function: 

 

f (x, t) Real{
2exp i (x ct)

x x L. 1 exp( ).(1 exp( ) }
mH mH

=
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−⎛ ⎞− − −⎜ ⎟
⎝ ⎠

 

 
(2) 

 

                                                                                          
The parameter m  represents the stiffness of 
the bond that fixes the vibrating walls to the 
side walls. Incompressible fluid flow is 
governed by the general Cauchy equations 
accompanied with the continuity equation: 

 
 

.( u) 0t
∂ρ +∇ ρ =
∂

 

 

(3) 

u( u. u) p .t
∂ρ + ∇ = −∇ +∇ τ
∂

 (4) 

 
For the sake of the current research 

where the fluid is assumed to be 
viscoplastic, we choose the Bingham model 
and rely on the bi-viscosity model defined 
as8: 
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(5) 
 

                                                                                           
Where yτ  is the fluid’s yield stress, 0µ  is 

the viscosity of the un-yielded region, and 
∞µ is the viscosity of the yielded zone 

0( )∞µ >> µ . !γ  is the second invariant of the 
rate-of-deformation tensor with 
!γc = τy (µ0 −µ∞

) being the critical shear rate. 
To work with dimensionless parameters, we 
substitute: * , y* ,x x H y H t* t== = ω. We 
scale the velocity components with Hε ω  
and the stress terms with 2 2Hε ω . By so-
doing, we eventually end up with the 
dimensionless form of the governing 
equations9 which include the Bingham 
number (Bn) and Womersley number (Wo) 
defined as: 
 

(6) Bn =
τy

cµ∞ ρH
,Wo = H ω

ν
∞  

 
NUMERICAL METHOD 

In the present work we rely on the 
multiple-relaxation-time lattice Boltzmann 
method (MRT-LBM) 10 for numerically 
solving the governing equations. In the 
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present work, we rely on the D2Q9 model; 
the nine discrete velocities used in this 
model are given as 10: 
 

(7) 
c
i
=

(0,0) i = 0

(cosθ,sinθ),θ = (i−1)π
2

i =1,2,3,4

2(cosθ,sinθ),θ = (i−5)π
2

+
π
4
i = 5,6,7,8

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

 
The probability distribution function 

which specifies the probability of finding 
fluid particles moving in a specific direction 
is defined as: 

 
 (8) fi (x, t) ≡ f (x,c i , t)

 
 

This function is the time-evolution of the 
probability distribution function which is 
represented by the lattice Boltzmann 
equation (LBE) 10: 
 

(9) 
f
α
(x+ c

α
δt, t +δt)− f

α
(x, t) =

Ω
αi ( f i (x, t)− f i

eq (x, t))  
 

iαΩ is the collision matrix, and f i
eq is the 

equilibrium distribution function given by10: 
 

(10) f i
eq = wiρ 1+3ci .u+

9
2
(ci .u)

2 −
3
2
u2

⎡

⎣
⎢

⎤

⎦
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     Where we have: 0w 4 /9= , 1,2,3,4w 1/9= , 
and 5,6,7,8w 1/ 36= . In the present work, like 
our previous work 11, we have decided to 
rely on the multiple-relaxation-time (MRT) 
method for the collision matrix Ω .  (Please 
refer to Ref.11) In LBM, the macroscopic 
variables are calculated as: 

 

(11) ρ = f i
i=0

8

∑ (x, t); ρu = ci
i=0

8

∑ f i (x, t),
 

 
Where ρ  and u  are now the macroscopic 
density and velocity, respectively.  LBM is 
very convenient for simulating of non-
Newtonian fluids such as Bingham.  This is 
mainly (unlike conventional numerical 
methods) the rate-of-deformation tensor ij(d )  
can be computed at each grid point with no 
need for the velocity gradient. This tensor 
can be locally determined at each grid point 
as 11: 
 

(12) dij = −
1

2ρcs
2ξ

cαicαj
fα x, t( )
− fα

eq x, t( )
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      Where sc / 3= c and ξ  is the relaxation 
factor which is related to the kinematic 
viscosity by the relationship: 

(2 1) 6.∞ν = ξ −  As to satisfying the no-slip 
boundary condition at the fluid/solid 
interface, use can be made of the Ladd’s 
bounce-back idea 12. For the curved moving 
walls, we made use of an improved scheme 
of this rule by introducing parameter Δ  13: 
 

(13) Δ = x f − xw / x f − xb
 

 
     Where fx is the fluid node in the vicinity 
of the wall, bx is the solid node adjacent to 
the wall and wx  is the intersection of the 
wall and the link connecting the fluid and 
solid node. Once Δ is calculated, these steps 
should be followed 13: 
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(16) 

In order to verify the numerical 
simulation, we compare our results with the 
analytical solution presented by Yi et al. 4  
Fig. 2 depicts the comparison between the u-
velocity profiles obtained from the 
numerical simulation in the middle cross 
section of channel (with one vibrating wall) 
and analytical solution for 0.01ε = , k 3.8=  
(k is the dimensionless wave 
number),m 0.02= ,A 5= andWo 7.93= .The 
comparison  of the numerical results 
obtained in this study with the analytical 
solution shows a qualitative good 
agreement.  

 

 
 

Figure 2. Comparison between our 
numerical results (symbols) with the 

analytical results (lines) reported in Ref. 4 
for three different elapsed times. 

RESULTS AND DISCUSSIONS 

Having verified the numerical approach 
for the Newtonian fluid, we now present 
results addressing the effect of yield stress 
on the flow field (We show typical results 
only9).Fig. 3 and Fig. 4 depict the effect of  
Bingham number on the u-velocity profiles 
at the middle of the channel and along the 
horizontal centreline of the channel at two 
elapsed time steps for 0.3ε = , 
k 3.8= ,m 0.02= ,A 5= andWo 7.93= . 
These figures show that the yield stress has 
a significant effect on the velocity profiles.  
It is shown that for both cases, Bn effect has 
a non-trivial effect on the velocity profiles 
which seems to be related the location of the 
plugs. 
 
 

 
 
 

 
Figure 3. Effect of the Bingham number on 
the variation of the u-velocity profiles for 

x=L/2; t=0(top), t=T/4(Bottom) 
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Figure 4. Effect of the Bingham number on 
the variation of the u-velocity profiles for 

y=0.5; t=0(top), t=T/4(Bottom) 
 
 

 
 

 
 

Figure 5. Effect of  Bingham number on the 
streamline pattern; Bn=0 (top), Bn=10 

(Bottom) 
 

To further explore the effect of the 
Bingham number on peristaltic flow, in Fig. 
5 we have shown its effect on the streamline 
pattern at the end of the cycle (t = T) 

form 0.02= , A 5= , k 3.8=  andWo 7.93= . 
It is shown that the sense of rotation of the 
secondary vortices is opposite to the primary 
ones. By increasing the Bingham number, 
the streamlines tend towards a more circular 
form. 

In order to investigate the role played by 
the fluid’s yield stress on the mixing 
efficiency. We have relied on the drift 
parameter as proposed by Ng and Ma7. It is 
a criterion based on the spatial-averaged 
value of the mass transport velocity. To this 
end we consider a set of Lagrangian 
particles introduced to the steady streaming 
flow and compare the mean drift transferred 
to them for different parameter values. The 
mean drift parameter is defined as 7:  

 

(17) Dr =
k
2π

(ulag
2+vlag

2 )
0

2π k

∫0
1

∫ dxdy
 

 
where lagu and lagv  are the components of 
the mean Lagrangian velocity. Fig. 6 shows 
the effect of yield stress on the mean drift 
parameter for low deformation and high 
deformation waves for m 0.02= ,A 5= , and  
Wo 7.93= ,respectively. As can be seen in 
these figures the mean drift parameter of 
Bingham fluids is larger than that of 
Newtonian fluids provided that the wave 
amplitude is smaller than a certain value 
.The situation becomes totally different 
when amplitude is large. As can be seen in 
Fig. 6 (bottom), at large amplitude, it is 
better for the fluid to have no yield stress as 
it decreases the mean drift of the flow. 
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Figure 6. Effect of the Bingham number on 

the drift parameter obtained at different 
wave numbers: 0.01ε = (top), 

0.3ε = (bottom) 
 

CONCLUDING REMARKS 
In the present work, the effect of yield 

stress on the flow induced by peristaltic 
vibration of a single wall of a closed cavity 
is numerically investigated. The results 
indicate that the yield stress has a non-trivial 
effect on the variation of velocity profiles 
which is related to the plug morphology. 
Based on the results obtained for the mean 
drift parameter, one can conclude that the 
yield stress can improve the mixing 
performance of the flow field if the 
travelling wave is of small amplitude, while 
for the large-amplitude case, the yield stress 
has a negative effect on the mixing 
efficiency in the channel.  
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