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ABSTRACT 
The momentum transfer characteristics 

for the steady flow of Bingham plastic fluids 
across a square cylinder placed in a channel 
have been numerically studied in terms of 
the streamlines, yield surfaces and drag 
coefficients. The present numerical results 
on the drag are consolidated via a simple 
predictive expression. 

 
INTRODUCTION 

Bingham plastic fluids constitute a major 
class of viscoplastic fluids (Macosko1). 
These materials are characterized by their 
dual nature, i.e., coexistence of yielded 
(fluid-like) and unyielded (solid-like) 
regions depending upon the existing stress 
levels vis-a-vis the fluid yield stress thereby 
making their homogenization and 
heating/cooling far more complicated than 
that for simple Newtonian fluids like air and 
water. 

Recently much research work focussed 
on investigating the momentum/heat transfer 
characteristics for a circular, square and 
elliptical cylinder immersed in viscoplastic 
fluids (Mossaz et al.2; Nirmalkar and 
Chhabra3; Nirmalkar et al.4; Patel and 
Chhabra5). However most of these studies 
deal with the unconfined flow conditions. 
The available literature dealing with the 
effect of confinement on the flow past a 
cylinder pertains mostly to power-law fluids 
(Bharti et al.6; Gupta et al.7; Dhiman et al.8) 
except for the study of Mitsoulis9. 

Mitsoulis9 has studied creeping viscoplastic 
flow past a confined circular cylinder and 
reported the effect of the Bingham number 
on drag and on the shape and extent of 
yielded/unyielded regions. Hence there are 
no such numerical results available for the 
flow of viscoplastic fluids past a confined 
square cylinder. Thus, the aim of the present 
study is to explore the effect of channel 
confinement on the steady flow of Bingham 
plastic fluids past a confined square cylinder 
for a wide range of conditions as: Reynolds 
number, 0.1 40Re≤ ≤ ; Bingham number, 
0.01 100Bn≤ ≤ ; blockage ratio, β = 0.2, 
0.3 and 0.4 . Over these range of conditions, 
the flow field is steady. 
 
PROBLEM FORMULATION 

Consider the flow of an incompressible 
Bingham plastic fluid with inlet velocity, 
0U  past a square bar paced in a channel, as 

shown in Fig. 1. The extent of confinement 
is defined by the blockage ratio, ( )l Hβ =  
which varied from 0.2 to 0.4 in this study.  

Figure 1. Schematic representation of the 
flow and computational domain. 
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The Bingham plastic fluid enters the 

channel at the uniform inlet velocity, 0U  and 
eventually develops into the fully developed 
condition well before impinging on the 
square cylinder. The flow is assumed to be 
steady, laminar, 2-D and incompressible. 
The equations of continuity and momentum 
in their dimensionless forms are written as 
follows: 

 
Continuity equation: 
 
∇.V = 0                                         (1) 
                                                                                                                        
Momentum equation: 
 

(V ⋅ ∇)V = −∇P + 1
Re

∇⋅ τ                      (2) 

 
In the aforementioned equations, the 

length, velocity, pressure and the stress 
components are scaled using l, 0 ,U 2

0Uρ  
and 0( / )b U lµ  respectively. Evidently the 
flow field is governed by three 
dimensionless numbers namely, Bingham 
number, ( ) ( )0 0bBn l Uτ µ⎡ ⎤= ⎣ ⎦, Reynolds 

number, ( ) ( )0 bRe U lρ µ⎡ ⎤= ⎣ ⎦ and blockage 
ratio, β . For a Bingham plastic fluid the 
extra   stress    tensor, τ   is  given   as  
(Macosko1) :   

 

τ = 1+ Bn
!γ

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
!γ  ,     if      Bnτ >            (3a)   

          
!γ =0  ,                     if      Bnτ ≤           (3b) 

 
where !γ  is the rate of strain tensor and 

!γ = tr !γ 2( ) . Hereτ is related to the scalar 

viscosity function ( )η  as:  

τ =η !γ                                                        (4) 
 
Evidently, the incorporation of Eq. 3 

directly into a numerical scheme is not 
straightforward due to its discontinuous and 
non-differentiable nature. One of the most 
commonly applied regularization approach 
to overcome this issue is the Papanastasiou’s 
exponential model10. Using this 
regularization approach, the scalar viscosity 
function η( )  is re-written as: 

 

ηp =1+
Bn 1− exp −m !γ( )⎡
⎣

⎤
⎦

!γ
                    (5) 

 
Here m is a dimensionless regularization 
parameter; obviously, large values of 
m→∞  (in Eq. 5) are required to predict the 
true Bingham plastic model given by Eq. 3. 
The problem closure is obtained by 
specifying the boundary conditions. These 
are of no-slip on all solid boundaries; the 
uniform velocity at the inlet and a zero 
diffusion flux condition for all dependent 
variables (except pressure) at the exit of the 
duct are used, as shown in Fig.1.  
 
NUMERICAL SOLUTION SCHEME 

The governing differential equations 
subject to the appropriate boundary 
conditions have been solved using the 
Finite-element based solver COMSOL 
Multiphysics (Version 4.3a). The effective 
viscosity for the regularized Papanastasiou - 
Bingham plastic model10 was estimated via 
a user defined function (UDF). A relative 
convergence criterion of 10-5 is used for the 
primitive variables (p, v). Further the von 
Mises criterion (Macosko1) with a relative 
tolerance level of 10-6 is used for 
approximating the yield surfaces. 
Furthermore a fine mesh is created using 
quadrilateral cells with non-uniform spacing 
in the regions of high gradients (close to the 
cylinder surface and near the confining 
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walls) as well as near the yield surfaces so 
as to capture the steep velocity gradients 
even at the highest value of the Reynolds 
number, i.e., Re = 40 used here. Next, in 
order to ensure that the present results are 
free from domain effects,  the effect of the 
upstream ( )uL  and downstream lengths, 

( )dL  on the total drag and pressure drag 
coefficient  is examined (see Table 1). 
 

Table 1. Effect of the upstream length, uL  
and the downstream length, dL at Re = 0.1 

and β = 0.2. 

  Bn = 0.01 Bn = 100 

/uL l  /dL l  DC  DPC  DC  DPC  

50 20 616.97 408.27 31385 26093 
60 20 616.97 408.27 31387 26095 
70 20 616.97 408.27 31390 26098 
60 10 613.50 405.75 31386 26094 
60 20 616.97 408.27 31387 26095 
60 30 616.97 408.28 31388 26096 

 
Table 2. Grid independence test at Re = 40 

and β = 0.4. 

 No of Bn = 0.01 Bn = 100 

Grid elements DC  DPC  DC  DPC  

G1 78000 8.6913 7.5323 91.988 77.422 
G2 89600 8.6835 7.5362 91.932 77.503 
G3 101200 8.6783 7.5405 91.893 77.499 

 
Table 3.  Influence of regularization 

parameter, m on total drag and pressure drag 
coefficients at Re = 40 and β = 0.4. 

 Bn = 10 Bn = 100 
m DC  DPC  DC  DPC  

104 16.529 13.692 91.932 77.503 
105 16.529 13.687 92.031 76.692 
106 16.529 13.687 92.031 76.588 

 

Since these values varied slightly (within 
±0.5%),  therefore it can be concluded that 
uL = 60 and dL  = 20 are sufficient  in the 

present study to eliminate the boundary 
effects. Also, in order to resolve the 
boundary layers at the extreme values of the 
parameters, a suitable computational mesh is 
required. Table 2 shows that the present 
results reported in terms of the total drag 
and pressure drag coefficient for grid G2 
and G3 differ from each other by about 
±1%; hence justifying the use of G2 in the 
present study. In addition, an adequate value 
of the regularization parameter ( 510m = ) is 
also desirable such that any further 
increment in its value has no impact on the 
yield surfaces (see Fig. 2) and on the values 
of the drag coefficients. The specifics for m 
test are listed in Table 3. In short, uL = 60 
and dL = 20, grid G2 and regularization 
parameter, 510m =  have been found to be 
sufficient for the present numerical results to 
be fairly robust against numerical artifacts.  

Figure 2. Influence of regularization 
parameter, m on yield surfaces at Re = 40 

(shaded regions represent unyielded 
regions). 

 
Furthermore, in order to ensure the 
reliability and accuracy of the present 
results, comparisons were made with some 
benchmark numerical results available for 
an unconfined square cylinder in Bingham 
plastic fluids (Nirmalkar et al.4) and 
confined square cylinder in Newtonian 
fluids (Gupta et al.7). The present numerical 
results (Table 4) and (Table 5) are found to 

ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 25, 2017

257



be within (±2%) and (±1%) with those of 
Nirmalkar et al.4 and Gupta et al.7 

respectively. Hence, the present numerical 
results are regarded to be reliable to within 
(±1-2%). 

 
Table 4. Comparison of total and pressure 
drag coefficients in Bingham plastic fluids 

for unconfined square cylinder. 

  Nirmalkar et al.4 Present 
Re Bn DC  DPC  DC  DPC  
0.1 1 670.89 443.83 671.17 450.13 
0.1 100 31923 26681 31790 26024 
40 1 2.6972 - 2.6783 - 
40 100 80.020 66.293 79.847 65.243 

 
Table 5. Comparison of total drag 

coefficients in Newtonian fluids for 
confined square cylinder, β = 1/8. 

 Re = 5 Re = 10 Re = 40 

Gupta et al.7 5.549 3.511 1.864 
Present 5.567 3.529 1.893 

 
RESULTS AND DISCUSSION 
The present numerical results are analyzed 
in terms of the morphology of yield 
surfaces, streamlines, pressure coefficient, 
shear rate contours and pressure/total drag 
coefficients as functions of Reynolds 
number, Bingham number and blockage 
ratio. 

 
Streamline profiles and yield surfaces 

It is customary to visualize the flow field  
in terms of the representative streamlines, as 
shown in Fig. 3.  At Re = 0.1, due to low 
fluid inertia, the fluid elements follow the 
body contour but at Re = 40  wakes are 
observed in the rear of the square cylinder at 
Bn = 0.1 due to the establishment of adverse 
pressure gradient. In fact, as the value of Bn 
increases, the fluid yield stress suppresses 
the tendency for flow detachment eventually 
leading to disappearance, of the wake 
altogether at high Bingham number. 

Furthermore, the yield stress effects also 
manifest in the form of yielded (unshaded 
regions) and unyielded regions (shaded 
regions) as shown in Fig. 3. It can be noted 
that an increase in the value of the Bingham 
number accentuates the extent of unyielded 
part whereas an increase in the value of the  

Figure 3. Representative streamline profiles 
and  yield surfaces at β  = 0.4 (unshaded 

regions represent yielded regions and shaded 
regions represent unyielded regions). 

 
Reynolds number expands the extent of the 
yielded region. For instance, at Bn = 10, it 
can be observed that vertical polar caps 
completely vanish at Re = 40. Not only this, 
the extent of yielded fluid-like region has 
also grown in size. Finally it can be noted 
that both streamlines and unyielded regions 
exhibit symmetry along the horizontal axis. 
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In the limit of Bn→∞ corresponding to the 
fully plastic limit, the yield surfaces and 
hence the drag coefficient attain a constant 
value. 
 
Pressure coefficients 

Further insights can be developed by 
examining the variation of the surface 
pressure coefficient, PC  which is defined as 
the ratio of static to dynamic pressure as: 

( )
2
0

2 s
P

p p
C

Uρ
∞−

=                                        (6)  

where, sp  is the local pressure on the 
surface of the cylinder and p∞  is the 
reference pressure far away from the 
cylinder. Fig. 4 shows that both the yield 
stress and the blockage ratio, β  exert 
positive influence on the surface pressure, as  

Figure 4. Variation of pressure coefficient 
( )PC with Bingham number, Bn, for Re = 

40. 
 
the maximum value of the surface pressure  
coefficient is observed at Bn = 100 and β = 
0.4. Also the magnitude of the surface 

pressure coefficient, PC  is maximum at the 
front stagnation point and minimum at the 
rear stagnation point because at the front 
stagnation point the kinetic energy of a fluid 
element is converted into pressure and then 
the fluid slowly accelerates at the expense of 
pressure towards the rear end. 
 
Shear rate contours 

Representative dimensionless shear rate 
contours are shown in Fig. 5. It can be 
clearly observed that shear rate is relatively 
high at the corners of the square cylinder 
and adjacent to the confining walls due to 
the imposed no-slip condition as compared 
to the unyielded regions where the shear rate 
is of the order of ~ O(10-7).  Furthermore the 
magnitude of shear rate also increases with 
the increasing value of blockage ratio, β . 
As the blockage ratio, β  increases, the flow 

passage becomes narrower due to which the  
Figure 5. Shear rate contours at Re = 40 

(unshaded regions represent yielded regions 
and shaded regions represent unyielded 

regions). 
 

shear rate increases in the regions 
demarcating the yielded/unyielded regions. 
This effect is further accentuated as fluid 
inertia (Re) increases. 
 
Drag coefficients 

It is the net hydrodynamic force acting 
on the surface of the cylinder due to normal 
forces, i.e., pressure drag coefficient, DPC  
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and viscous forces i.e., viscous drag 
coefficient, DFC . The total drag coefficient 
is expressed as: 

2 2 2
0 0 0

2 2 2D DP DF
D DP DF

F F FC C C
U l U l U lρ ρ ρ

= = + = +   (7)  

     
where, DF , DPF   and DFF  refer  to the total 
drag, pressure drag and frictional drag force 
components respectively per unit length of 
the cylinder acting in the direction of flow. 

Figure 6. Variation of drag coefficient ( )DC  
with Bingham number (Bn) at β = 0.4. 

 
Figure 7. Variation of ratio of pressure drag 
coefficient to total drag coefficient 
( )DP DC C with Bingham number (Bn) 

at β = 0.4. 
 

Dimensional considerations suggest the 
individual and the total drag coefficients to 
be functions of the Reynolds number, 
Bingham number and blockage ratio. Fig. 6 

and Fig. 7 show this functional relationship.  
It is clearly seen that the drag coefficients 
exhibit a positive dependence on the 
Bingham number and inverse dependence 
on the Reynolds number. Furthermore, the 

pressure drag component forms a major part  
Figure 8. Variation of drag coefficient ( )DC  

with Bingham number (Bn). 
 
of the total drag under most conditions, Fig. 
7, and it also exhibits qualitatively similar 
behavior as the total drag coefficient. As the 
value of the Bingham number increases, the 
drag coefficient is seen to approach a 
limiting value which is independent of 
blockage ratio, β  but depends on the 
Reynolds number Fig. 8. This is very likely 
due to the fully plastic flow limit. At low 
Bingham number depending upon the value 
of the Reynolds number, there is very little 
influence of the fluid yield stress. This 
behavior is clearly seen up to about Bn~0.5 
at Re = 40 whereas this limit is seen to be 
approached at Bn = 0.01 for Re = 0.1. This 
clearly reflects a balance between the 
viscous (augmented by yield stress) and the 
inertial forces. Fig. 9 shows how the 
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contribution of pressure drag coefficient 
gradually increases with the increasing 
Bingham number and/or the blockage ratio. 
But eventually at large values of Bn, this 
ratio also approaches a constant value of 
about ~0.84. This behavior is qualitatively 
consistent with that reported in the literature 
(Gupta and Chhabra11). Also it can be 
observed that blockage ratio, β   has 
positive influence on total drag ( )DC  and 

pressure drag coefficient ( )DPC  which is 
due to the sharpening of velocity gradients 
and extra dissipation at the confining walls. 

  
Figure 9. Variation of ratio of pressure drag 

coefficient to total drag coefficient 
( )DP DC C with Bingham number (Bn). 

 
Finally, the present numerical results (190 
data points) on the  total drag coefficient are 
consolidated via a simple predictive 
correlation as a function of the modified 
Reynolds number, ( )( )1Re Re Bn∗ = +  
given as: 
 

( )( ) ( )0.950.839.78 1DC Reβ ∗= +               (8) 

 
The resulting mean and maximum 
deviations are found to be 17%  and 50% 
respectively. Only 30 data points, the 
deviation between the predicted and present 
numerical results was found to be larger 
than 25%. Generally large average 
deviations were observed at low values of 

Bingham number, 0.01 1Bn≤ ≤  which  
could be possibly due to the regularization 
scheme used here. But this behavior is 
consistent with that for spheres in Bingham 
plastic fluids (Atapattu et al.12).  
CONCLUSIONS 
 In this study, extensive numerical results 
elucidating the role of blockage ratio on the 
steady flow of Bingham plastic fluids past a 
square cylinder are presented in terms of the 
yield surfaces, streamlines, pressure 
coefficient, shear rate contours and 
pressure/total drag coefficients over wide 
ranges of conditions: Reynolds number, 
0.1 40Re≤ ≤ ; Bingham number, 
0.01 100Bn≤ ≤ ; blockage ratio, β = 0.2, 0.3 
and 0.4. The increasing  Reynolds number 
tends to reduce the extent of  unyielded 
zones while the Bingham number 
suppresses this tendency. General level of 
shearing also rises with the increasing 
blockage as does the pressure on the surface 
of the submerged cylinder. Under most 
conditions, the overall drag is dominated by 
the form drag. A simple predictive equation 
is presented which captures the effects of 
Reynolds number, Bingham number and 
blockage ratio adequately. At very high 
values of Bingham number, both the 
pressure and total drag are seen to be 
independent of blockage ratio. The total 
drag coefficient exhibits a positive 
dependence on the blockage ratio and the 
Bingham number.  
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NOMENCLATURE 
DC    Drag coefficient, dimensionless 

DFC  Friction  drag  coefficient,  
dimensionless 

ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 25, 2017

261



DPC   Pressure   drag   coefficient,  
dimensionless 
PC    Pressure coefficient, dimensionless 

DF  Drag force per unit length of the 
cylinder, N.m-1 
DFF  Frictional component of drag force per 

unit length of the cylinder, N.m-1 
DPF  Pressure component of drag force per 

unit length of the cylinder, N.m-1 

H     Channel height, m  
l      Side length of square cylinder, m  
m     Growth rate parameter, dimensionless 
 p      Pressure, dimensionless 
sp    Local pressure on the cylinder surface, 

Pa 
p∞   Reference pressure far away from the 

cylinder, Pa 

0U    Inlet velocity, 1m s−⋅  
 
Greek symbols 
∇     Del operator, 1m−  
η    Apparent viscosity, dimensionless  
γ&   Rate of strain tensor, dimensionless 

bµ    Plastic viscosity, .Pa s  
ρ     Density of the fluid, kg.m-3 
τ    Extra stress tensor, dimensionless 
0τ    Yield stress, Pa  
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