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ABSTRACT
The non-isothermal behavior of an Oldroyd-
B fluid is modeled by temperature-dependent
fluid properties via an Arrhenius approach and
an internal energy balance that accounts for
both energy and entropy elasticity. The nu-
merical results for the temperature field in
an axisymmetric 4:1 contraction flow with
heated/cooled walls are compared to experi-
mental data of a polyisobutylene based poly-
mer solution (PIB-Boger fluid) and found to be
in good agreement. Deviations are discussed.

INTRODUCTION
Large temperature gradients can frequently be
encountered in polymer processing. This is
due to the fact that heat transfer in these flu-
ids is very low,3 while the boundaries of the
domain are often heated or cooled. In addition,
viscous dissipation occurs locally, especially in
the boundary layer where the velocity gradients
are large, and leads to a local increase in tem-
perature. Finally, the viscometric parameters
are strongly dependent upon temperature and
also influence the flow field.
Numerical flow simulations can contribute to
a deeper understanding of the flow dynamics.
To assure the correctness of the numerical ap-
proach, it is important to validate the used mod-
els by comparing the results to experimental
data. For the current work, experimental data
from Yesilata et al.7 is used to investigate the
validity of the suggested modeling approach.
Yesilata et al. investigated a polyisobutylene
based polymer solution (PIB-Boger fluid) in
a circular 4:1 contraction flow with heated or

cooled walls.
The Boger fluid was developed to close the
gap between experimental observation and nu-
merical prediction.4 It shows nearly constant
viscosity over a wide range of flow rates and
its flow behavior can be modeled by a simple
rate type model.2 In the range of this work,
the Oldroyd-B fluid model is employed. Non-
isothermal behavior is simulated by allowing
the model constants (viscosities and relaxation
time) to vary with temperature.
For viscoelastic fluids, the 4:1 contraction flow
is a popular benchmark test case. The geo-
metrical singularity at the re-entrant corner is a
challenge for the stability of the numerical ap-
proach, especially with increasing elasticity of
the flow.
The paper is organized as follows: the ther-
morheological modeling is described in the
next section, followed by a section describing
the numerical setup and the test case. After-
wards, some key results are shown and dis-
cussed before the main points of the study are
summarized.

THERMORHEOLOGICAL MODELING

The incompressible continuity and momentum
balance equations describe the fluid dynamics.
The viscoelastic fluid behavior is modeled by
the Oldroyd-B fluid model. The stress tensor ttt
is split into a solvent (Newtonian) stress tensor
ttts and the polymeric stress tensor tttp

ttt = ttts + tttp. (1)
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The Oldroyd-B constitutive equation for the
polymeric stress tensor is

tttp +l
O

tttp = 2hpD (2)

with the upper convected time derivative
O

tttp
and the deformation rate tensor D = (———u +
(———u)T )/2. The non-isothermal behavior of the
Oldroyd-B fluid is modeled by allowing the
three model constants, solvent and polymeric
viscosities hs, hp and relaxation time l , to
vary with temperature. An Arrhenius approach
describes this dependence for the PIB-Boger
fluid, the values of the constants are chosen ac-
cording to the experimental data7

hs(T )

hs0
=

hp(T )

hp0
=

l (T )

l0
= aT(T ). (3)

Here aT(T ) is the Arrhenius shift factor, hs0,
hp0 and l0 are the reference values of viscosi-
ties and relaxation time at reference tempera-
ture T0. The shift factor is further dependent
upon the activation energy DH and the univer-
sal gas constant Ru

aT(T ) = exp


DH
Ru

✓
1
T
� 1

T0

◆�
. (4)

The temperature field is calculated using the in-
ternal energy balance equation. Assuming the
internal energy to depend solely upon tempera-
ture, it reads

∂ (rcpT )

∂ t
+u ·———

�
rcpT

�
� kDT �Q = 0 (5)

with density r , specific heat capacity cp, veloc-
ity vector u, thermal conductivity k and source
term Q. The source term is assumed to include
internal energy sources only. For viscoelastic
fluids, these are composed of dissipative and
elastic components. The ratio of these is locally
dependent upon the flow characteristics,8 but
is simplified here by using a uniform splitting
factor a for the whole fluid domain, following
an approach of Peters and Baaijens.5 Thus, the
source term reads

Q = ttts : D+atttp : D+(1�a)
tr(tttp)

2l (T )
. (6)
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Figure 1. 2D sketch of the axisymmetric
testcase geometry

TEST CASE SETUP
The foam-extend release of the OpenFOAM
package6 is used as basis for the implemen-
tation. It provides a Finite-Volume Method
which is employed for the numerical discretiza-
tion of the governing equations. The solution
of the coupled set of balance and constitutive
equations is achieved by a decoupled approach,
based on the SIMPLE algorithm.1 The sta-
bilization library developed by Niethammer et
al.10 assured a stable solution of the consti-
tutive equation of the polymeric stress tensor.
More specifically, the root conformation repre-
sentation first proposed by Balci et al.9 is used
for the presented results.
The shape of the fluid domain is sketched in
Figure 1. An axisymmetric 4:1 contraction flow
is investigated, the geometry is chosen equiva-
lent to the experimental setup of Yesilata et al.7
The radii of the two cylinders are R1 = 25.4mm
and R2 = 6.35mm. The inlet duct has a length
of 96R2 in total, while the heating or cooling of
the walls starts at �92R2. The outlet duct has a
length of 24R2.
At the inlet, a uniform velocity profile is im-
posed. In the experimental setup, the inlet is
realized in form of a smaller tube of unknown
diameter, so the velocity profile needs to de-
velop in both setups. The inlet velocities at
the respective Deborah numbers shown here
are calculated from the Deborah and Reynolds-
numbers given in the experiments. The tem-
perature at the inlet and the first wall segment
is imposed as 296.5K, the reference room tem-
perature of the experiments. For the stress ten-
sor, a zero gradient is imposed at the inlet, al-
lowing the stress profile to develop according
to velocity and temperature profiles.
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r 880 kg/m3 cp 1970 J/kgK
hs0 31 Pas hp0 17 Pas
l0 2.0 s T0 296.5 K
k 0.13 W/mK DH

Ru
6414 K

Table 1. Fluid properties

Grid Control volumes Dxmin/R2

mesh 01 2060 0.096
mesh 02 6100 0.048
mesh 03 22520 0.024

Table 2. Mesh parameters

No-slip boundary conditions are employed for
the velocity at the walls. The wall between
�96R2 and �92R2 is given room temperature
296.5K, all other walls are heated or cooled
with respect to the inlet temperature.
At the outlet, a fixed pressure is assumed,
all other field variables have a zero gradient
boundary condition.
Fluid properties are presented in Table 1. Three
different meshes, that are successively refined
towards the singularity, are considered in order
to investigate grid sensitivity. Table 2 indicates
the mesh parameters.

RESULTS AND DISCUSSION
Three dimensionless numbers characterize
the considered fluid behavior: the Reynolds
number Re, the Weissenberg number Wi and
the Deborah number De. While the Reynolds
number describes the ratio of inertial to viscous
forces Re =

ux,2R2r
h0

, the Weissenberg number
measures the ratio of elastic to viscous forces
in a viscoelastic material Wi =

lux,2
R2

, with the
mean axial velocity in the outlet duct ux,2 and
the total viscosity h0 = hs + hp. The Deborah
number is defined as the ratio of characteristic
time of the fluid to the time scale of the pro-
cess, yet it equals the Weissenberg number in
the considered steady flow regime and both are
treated equivalently here. The axial position
of the measured data is denoted by the dimen-
sionless axial coordinate z = x/R2. The origin
of the coordinate system (z = 0) is located at
the contraction plane, so that values smaller
than zero refer to the upstream section, values
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Figure 2. Non-dimensional temperature over
radial position for a wall temperature of

Tw = 285K at De = 5.04

larger than zero to the downstream channel.
The presented results are evaluated at an axial
position z = �0.3, slightly upstream of the
contraction plane.
The temperature field data is non-
dimensionalized as proposed by Yesilata
et al.7 in order to assure comparability. Ref-
erence values are the inlet temperature of the
fluid Tin = 296.5K and the wall temperature
Tw of the considered test case, q is the non-
dimensional temperature q = Tw�T

Tw�Tin
.

Results are compared to the experimental data
at two different wall temperatures: Tw = 285K
and Tw = 305K.

Figure 2 presents the non-dimensional
temperature over the dimensionless radial
coordinate at a wall temperature of 285 K
and Deborah-number of De = 5.04. The
results of the numerical simulations for three
successively refined meshes are compared to
experimental data reproduced from Yesilata
et al.7 The experimental data were measured
from r/R2 = �4 to r/R2 = 4, both values are
shown here in the positive radial coordinate.
Although there are obvious deviations to the
experimental data, the qualitative representa-
tion of the values is good. Deviations are most
pronounced at the wall and at the centerline.
At the radial coordinate r/R2 = 4, the wall
boundary condition would be expected. In
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Figure 3. Non-dimensional temperature over
radial position for a wall temperature of

Tw = 286K at De = 5.04

the simulations, the nominal wall temperature,
that is also used for non-dimensionalization
of temperature is imposed. As expected,
the simulation value for q here is zero. The
experimental data is not given at the wall, the
temperature profile suggests however that q is
approximately 0.1 there, which would equal a
wall temperature of about 286 K. What may
have happened is that in the long test section,
the wall temperature could not be kept entirely
constant. In Figure 3 the radial temperature
profiles for the three meshes of simulations at
an imposed wall temperature of 286 K are pre-
sented. With this adjusted setup, the near-wall
temperature profile of the experimental data
can be reproduced almost exactly.
At radial position r/R2 = 0, the deviation
between experimental data and simulation data
is more pronounced. Yet also this behavior
could be expected of the numerical simulation.
In the axisymmetric mesh geometry, the flow
is almost two-dimensional. With the heat
conduction being extremely low in polymeric
solutions,3 the only possibility for temperature
to change in radial direction is heat production
by viscous dissipation. Viscous dissipation
occurs mainly where (pronounced) velocity
gradients exist, that is at the wall and inside the
re-circulation zone that forms in front of the
contraction. In these regions, the temperature
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Figure 4. Non-dimensional temperature over
radial position for a wall temperature of

Tw = 305K/304.35K at De = 11.3

profile can be captured well. In the center of
the tube, however, velocity gradients are small
and consequently dissipation is small also. In
the axisymmetric test case the flow symme-
try in radial direction is enforced. The bulk
temperature is only slightly reduced, while it
is decreased significantly in the experimental
data. Here however, the flow field is very
unlikely to be fully symmetric. Disturbances
can be expected to be encountered in any real
flow, and are visualized here through the differ-
ence in the experimental data for the negative
and positive radial segment. Disturbances
create velocity gradients, and the dissipation
is increased. In the experimental setup it is
also possible that disturbances are imposed
by the input of the temperature probes in the
flow field. At this point it is important, to keep
in mind the differences in the setup between
numerical and experimental investigation. The
numerical simulation shows the “perfect” flow
conditions, that are most unlikely to occur for
real flow. Keeping this in mind, the tempera-
ture profile can be reproduced in a satisfactory
qualitative way.
Figure 4 shows the dimensionless temperature
calculated on the three meshes for a heated
wall of temperature Tw = 305K at a Deborah
number of De = 11.3. The purple line repre-
sents the simulation on the finest mesh at an
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imposed wall temperature of Tw = 304.35K
(which equals q ⇡ 0.75). The same effects
can be seen as for the cooled wall. With the
adjusted setup, the experimental data could
be met in the vicinity of the wall. The bulk
temperature is underpredicted, although the
deviations to the experimental data are less
pronounced than for the cooled wall. The
deviation between the measured data points at
the same radial position are also significant.

SUMMARY AND CONCLUSIONS
An approach for modeling the thermorheolog-
ical behavior of an Oldroyd-B fluid is pro-
posed and validated against experimental data
of a polyisobutylene based polymer solution
flow through a circular 4:1 contraction with
heated or cooled walls.7 The non-isothermal
character of the Oldroyd-B fluid is realized by
temperature-dependent model constants. These
are related to reference values with an Arrhe-
nius approach. The internal energy balance
equation is derived following the work of Pe-
ters and Baaijens,5 energy and entropy elastic-
ity are included. Partitioning between both is
achieved by defining an a priori splitting fac-
tor. In the numerical setup, an axisymmetric
4:1 contraction is investigated.
The results indicate that with the proposed
model for the non-isothermal behavior of the
considered viscoelastic fluid the temperature
gradient near the wall can be well reproduced,
while the bulk temperature tends to be underes-
timated for heated walls and overestimated for
cooled walls, respectively. The deviations in
the bulk temperature are assumed to be caused
by the enhanced viscous dissipation in the ex-
perimental flow through disturbances in the
flow field. These cannot be reproduced in the
simulations, where a perfectly symmetric flow
field is imposed by the axisymmetric test case
setup.
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