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Key References

• Rheology: Principles, Measurements 
and Applications

– C.W. Macosko (Wiley, 1994)

• Viscoelastic Properties of Polymers
– J.D. Ferry (3rd Edition, 1980)
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The Goal of Today…
(in honor of 20th anniversary)

• “I’m going to learn Jiu-Jitsu  VISCOELASTICITY?

LVE-3

How to Learn Viscoelasticity

Before… After… want some more???

VISCOELASTICITY

Neo(Hookean)

So What is a Complex Fluid?
• Complex fluids possess an underlying microstructure that can

be affected by (and in turn then affect) a flow field
– Gives rise to Visco-Elasticity

• Examples include:
– Polymer solutions, polymer melts, liquid crystals
– Foams, gels, bubbly-liquids,
– Suspensions, emulsions, slurries, mud..
– Food stuffs, paints, adhesives and other consumer products

• Basically everything except air, oil, water!
• These fluids violate Newton’s law of viscosity :

  
τ yx = µ ∂vx

∂y
τ = µ ∇v+∇vt{ }

•Rheology: study of the material properties of 
complex fluids in specified/known flow fields
•Non-Newtonian Fluid Dynamics: self-consistent
solutions of conservation of mass, momentum PLUS a 
constitutive model (rheological equation of state)

*Posthumous Portrait by Rita Greer (Wikipedia)

Non-
Newtonian

Neo-Hookean!!!

Isaac Newton, FRS 1672

Robert Hooke, FRS 1663

For example: “Neo-Hookean Dumbbell Model”

https://youtu.be/8PVeLqWnaXk
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Four Key Rheological Phenomena

5

force

shear

extension

G(t) : viscoelasticity shear thinning

strain hardening

  η( !γ )

ηE !ε( )

shear

torque

shear normal stressesN1( !γ )

Impact time

Image from Chris Macosko’s book

Surfactant Solution
(body wash)

Dilute Polymer Solution
(oil additive)

Entangled Polymers
(polyethylene melt)

Emulsion
(mayonnaise)

Suspension
(latex paint)

Gel
(gelatin) 6

Rheology = study of deformation of complex materials

EXAMPLES:
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Probing the Viscoelastic Response of Polymeric Materials

Natural Time Scale of Complex Fluids
• Natural time scale
• The Deborah number is a dimensionless measure 

compared with the time scale of the deformation... 

λ ≡ τmaterial ≈10 sec.

De < 1
Viscous Liquid

De ~ 1
Viscoplastic ‘Solid’

Brittle Solid  De ~1000!
©MIT; Harold.Edgerton Strobe Lab.

Images courtesy of
Cambridge Polymer Group

http://www.sillyputty.com

(Relaxation time of the material)

(The timescale of the process)
De ~

 
= τmaterial

T process

De ~ 10  Elastic Solid
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9

Origin of the Deborah number
see M. Reiner, Physics Today, January 1964, p. 62

Judges 5:5

LVE-10

A creep test:

Another creep test
(silicone gum!!)

A creep test (constant load)
on silly putty

From Youtube:
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11USGS Image Library “Byrd Glacier Flow”. Photo: Dr Bill Servais 
(http://www.rosssea.info/glaciers.html)

Elastic

Viscous

increasing amplitude
(of applied stress and/or deformation)

0˚ 30˚ 60˚ 90˚
10mm

“Linear viscoelasticity” is the limit 
of small loading amplitude 
(does not disrupt microstructure)

ideal elastic :

� = G�
 viscoelastic !

ideal viscous :

� = ⌘
d�

dt
= ⌘�̇
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ideal elastic :

� = G�  viscoelastic !

Basic tests:       apply                                measure                         calculate 

Step strain:

Creep:

Dynamic: 

t

γ γ0 s G

ideal viscous :

� = ⌘
d�

dt
= ⌘�̇

t

s s0 γ

t

J

t

modulus

compliance

t t

wt

γ s

wt
w

G’
G”

complex
moduli

(old literature: elastico-viscous)stress strain strain-rate
“shear rate”

LVE-14

0Impose: step strain constantg =

time

g

t

t log t

log G

Linear response: g small enough 
so that G(t) is independent of g

Stress Relaxation Modulus, G(t)

Observe : stress �(t, �0) Material function : G(t, �0) =
�(t, �0)

�0

s

Mathematically:

Heaviside Step Function

(How?  Use a rheometer)
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Stress Relaxation Modulus, G(t), Limiting Cases

time

τ Hookean

time

τ
Newtonian

time

τ
viscoelastic solid

viscoelastic liquid

Experimental difficulty:
True “step” displacement impossible
(instrument inertia at short times)

s

s

s

G(t, �0) =
�(t, �0)

�0

Maxwell Viscoelastic Model
• Let’s motivate these linear tests using a simple model

• Elastic solid:                                                   spring

• Viscous liquid: dashpot

• The Maxwell model is a superposition of these two:  

16

Go ηo

�e = G�

�v = ⌘�̇

total strain : � = �e + �v

stress is equal : � = �e = �v

� +
⌘0
G0

d�

dt
= ⌘0

d�

dt
! � + �

d�

dt
= ⌘0

d�

dt

� = ⌘0/G0 : relaxation time
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Example: Maxwell Model in Step Strain
• In a step-strain experiment, the material is subjected to an instantaneous 

strain of magnitude go
• Following the step, the strain is held fixed at this constant value and the 

stress is monitored in time.
• The initial stress is then  G0go
• Solving the Maxwell model, we have

• Dividing the stress by the strain, we get the “relaxation modulus”

17

G(t) = G0e
�t/�

t

γ γ0 

t

G(t)
G0e

�t/�

• No strain dependence
• Single relaxation time

� + �
d�

dt
= ⌘0

d�

dt
� = �(t = 0)e�t/� = G0�0e

�t/�

0

0Impose: step strain constantg =

time

g

Comparing with Measurements of G(t)

Observe : stress �(t, �0)

Material function : G(t, �0) =
�(t, �0)

�0

Modulus vs. time: AP

G0
G0

Modulus vs. time: AP

G0
G0

G(t) = G0e
�t/�

Example: Wormlike micellar solution (e.g. hair shampoo)

Choose a model and fit to data; e.g. Maxwell 

1.

2.

3.

4.
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Relaxation and creep function of (A) Maxwell, (B) Voigt, 
and (C) Kelvin model (standard linear solid). 

Eiji Tanaka, and Theo van Eijden CROBM 2003;14:138-150

Copyright © by International & American Associations for Dental Research

There are many other possible models…

LVE-20

Generalized Maxwell Model

  
G(t) = Gk exp(−t / λk )

k
∑

A spectrum of relaxation times {λk}   “Prony Series”
Extract spectrum by inversion (tricky) or 
Fit to model e.g. for polymers, Rouse, Zimm, reptation…

G(t) usually follows a kind of “equipartition”:

G(t) =
ρ Nav
M

kB T exp(−t / λk )
k
∑

other models:  G(t) = At−n   power-law spectra, near gel point
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Fitting to a sum of exponentials

G(t)

t

lk

Gi
k =1

k =2

k =3

...

k =4

k =N

“Mechanical Spectroscopy”
A spectrum of relaxation modes {λk}   “Prony Series”

k =1

LVE-22

Creep Compliance, J(t)

time

s s0

time

J
ϕ = 1/η

viscoelastic solid

viscoelastic liquid

Impose : step stress �0 = constant

Observe : strain �(t,�0) Material function : J(t,�0) =
�(t,�0)

�0

Fluidity : �(t,�0) =
�̇(t,�0)

�0
=

dJ

dt


